
AD-R149 323 DESIGN OF A PICTORIAL PROGRAM REFERENCE LRNGUAGE(U) i/I
RDVANCED INFORMATION AND DECISION SYSTEMIS MOUNTAIN YIEN

CA E Al DOMESHEK ET AL. AUG 84 RI/DS-TII-i~i4-4

UNCLASSIFIED AFOSR-TR-84-i159 F49620-8i-C-0067 F/G 9/2 MCL hEEh h

ENEhMhhhl

".,_ L• ;'; . '.-. ." .o .T-.r. . . " r- Y. w.' ru r .27~. --: wrv"
,' r , . ' v ,o~'- .', ..-. . " "- V .-. - ,* -

I~~~ I .0 :5
j . 0 2

1 .811111_L-25 11111"---411111-1.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STAN[ARD> qt, A

r"I

b2

* I

i. i i - F
• °. - . F

AFOSR.TR- ;.115 9

DE~SIGN OF A PICTORIL 1l11(;RANI R1".vGinANE

Lirle A.. Dcr--eshek
Jeffrey S. Dean

Susan G. P.csontbaum
N Brian P. McU'une

A(1vaflud Inro-flatiorl k, 1-ciior Sv.st',n
"10l San A'ntcuo -1 rcle. Sui t I
Nfountain (iw.C t!k O-12'

August imi-i

Fi nal1 Tec hnical Report ror J1u ne 1, 98I t .it

.Approved for public release: dkt r~ bmlt Vi Ilimited

UiteAd Srte. Air V -.rc

Ali lForc e' C flic e c" ' i 1? os'. -i rc 1;D C 3 1 9 4
Bolling Air Fcffc- DJ.(*?)n '

Liz ADVANCED INFORMATION & DECISION SYSTEMS

Mountain View, CA 94040 2 *1 2

uw ZD

SECURITY ZLASSIF'CATiON OF TIS PAGE

0 REPORT DOCUMENTATION PAGE
is REPORT SECURI-V CLASSIFiCATION 1b RESTRICTIVE MARKINGS

UNCLASSIFIED________________________

2a SECU.RITY CLASSIFICATION AUTH4ORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT

2b ECASSFIATIN OWGRAIN SCEDLEApproved for public release; distribut-ion-
2b OCLASIFIATIO DONGRAINGSCHEULEunlimited.

4Pt .FP.RMING ORGANIZATION REPORT NUMS8ERkSl 5, MONITORING ORGANIZATION REPORT NUMBERIS,

_________________________ AFOSr.- TR-_ It .15
4,* %AVE OF PERFORMING ORGANIZATION ba OFF ICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Advanced Information and fltapplhcablr, Air Force Office of Scien-ific Rcscarch
Decision SystemsI__________________________

6C ADDRESS 'City State and 11P Cude, 7b ADDRESS ICity. State and I/, Code,

201Sa Anono CrceSuite 286, Directorate of Mathematical and irnfcrmat:cn *

Mountain View CA 94040-127.0 Sciences, Bolling AFB DC 20332

$a NAME OF FUNDING/SPONSORING 6gb OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (it applicable,

*~ A RS r474_______ F49620-81-C-0067

8 c ADDRESS 'City, State and ZIP Coa." 10 SOURCE OF FUNDING NOS

PROGRAM PROJECT TASK~ WORK UNIT
ELEMENT NO. NO. NO NO

B311~inz AFB DC 20332 61102F' 2304 I A7
:1 Ti TLE Inctuair Wcurity Claaofication,
DESIGN OF A PICTORIAL PROGRAM REFERENCE LANGUAGE

12 PERSONAL AUTIIORIS,

Eric A. Domeshek, jeffrey S. Dean, Susan G. Rosenbaum, and Brian P. McCune.
13.. TYPE OF REPORT 13b, TIME COVERED (14 DATE OF REPORT Yr,. Mo.. Da), 15, PAGE C~uNT

Fi.nal FRcml/6/83 T03l/5/841 31 AUG 84 700
1I. SLPPLEMENTARY NOTATICN

17C0SA7CODES 18 So.B.ECT TERMS 'Ccintinue on Me-20s jfifluar- and saentifb by block numoe,

r1.L .R%, L.5p Program Reference Language (PRL); Extended Program Model
* (EPM); Inte'ligent Prograrm Editor (IPE); program documenta-

ti on; artificial intelligence (AI) CONTjINUED
19 ABSTRACT 'Continue on nruerse 'ifneceuflry ana idennhy by block numiber,

This report covers the work done during the third year of the Program Reference LanguageI
(PRL) project. During this year we focused on the problem of developing an adequate means
to expres the types of queries we had earlier identified as within the province of the

* PIRh. Thus, we studied both the structure of the actual query languagc and the design of

designated the PRL Pictorial Languagu (PRL/PL). The essential idea is that the users

* buil'-d templates to sketch out what an item that satisfied the query would look like. For
* p;ograms, this means specifying an arrangement of standard program fragments that

e characterize the desired part of the program. This document will discuss the design and-0
use of this pictorial language. ~

*20 D.STRSLJTiON A ,AiLASlLITV 3Fr ABSTRAC- 21 ABSTRACT SECURiT'. CLASSIF iCATION

jNC..ASSIFEO.UN..'M'TED 3 SAME AS OPT DTiC USERS - NAS

~2 .M Z ES'ONSiB.E NZ. '.D'iA_ 22t, ELEPf7NE N4UMBER 0 F~ cFFE S'M~ -

Dr._RobertN._Buchal 4939_____________________

OD FORM 14173.,83 APR E:)iT'CN OF I .A% 73 'S OBSOCLE.__ ----------

S SE Q:T j C-3s' Cr! C% -

'MCLASSIFIED
SECURITY' CLASSIFICATION OF THIS PAGE

* ITEM #18, SUBJECT TERMS, CONTINUED: knowledge base; multiple representations; protocol

analysis; user modeling; retrieval language; debugging program cliches; program annotations.

I0

SEC P-' C ASSC A--% IS A0

A,

" S
* AV.I. itv: Go.P)s

i and/or

Dist Special TABLE OF CONTENTS

I , Page -

1. INTRODUCTION 1

1.1 OVERVIEW 2
1.2 RESEARCH OBJECTIVES 3
1.3 GUIDE TO READING 4

2. PRL PICTURE LANGUAGE: PRL/PL 5 "- .

2.1 INTRODUCTION TO PRL PICTURE LANGUAGE 5
2.2 DESCRIPTION OF PRL/PL 6 0

3. FORMAL QUERY LANGUAGE: PRL/FL 29

4. PRL/PL EDITOR INTERFACE 32

5. PLANS FOR FURTHER DEVELOPMENT 34

5.1 QUESTIONS/ISSUES 34
5.2 FUTURE WORK 36

6. PERSONNEL 37

6.1 PERSONNEL 37
6.2 INTERACTIONS 40
6.3 PUBLICATIONS 43 1

7. REFERENCES 46

APPENDIX A. 47

AI'IICNDIX B. 48

AIlII.;NI)IX C. 49...:'

.... io

(ll.$f, C " ,. ! b~ ,,' :Lv~ io

,-I-

• -, i L - . _ -
=

_ ' - - . "- - - -° ; , . "

U LIST OF FIGURES .0

PAGE

1 1: Find The Functions That Contain Loops 7 0

2: Find The Loops Contained In Functions 8

3: Find All Functions Containing Loops And 9

If-Statements

4: Find All Functions Containing A Loop 10 0

Followed By An If-Statement

5: Find All Functions Which Contain Loops 11

That Contain If-Statements

6: Find The Function Named Bar 12 -

7: Find All Functions That Use The Variable Foo 14

8: Find All Functions Containing Loops Or 15

If-Statements

9: Find All Functions Containing Loops And 16 0

If-Statements

10: Find All Functions Containing Loops Or 17

If-Statements

* 11: Find The Functions That Do Not Contain Loops 19

12: Find The If-Statements Not Contained in Loops 20

13: Find The Functions Which Have A Loop Not 21

Followed By An If-Statement

- 14: Find The Functions In Which All Loops Contain 23

If-Statements

15: Find The Functions Which Contain 2 Loops That 24

Contain Ir-Statements

16: Find The Functions Which Contain An If-Statement 25 0

Not Contained In A Loop

17: Find Those Functions That t'se Some Variable 26

Before Setting That Variable

18: Find Those Functions In Which A Variable 27 0
Is Not Set Before That Variable is Used

ii .

0

1 0

19: PRL/FL: BNF SpecificatIon 30

20: An Unsatisfiable Precedence Graph 35
-

S

S

S S

* 0

0

0

*I i~

0

- . 4 . . . 4 4 - 4 . 4~ . ..

4 -. - - 4 4 - .4 -4---- . .. ±..&.aa ±tr, - .- ~.. 4.--' - - - ~. .~.. - .. a -

-- I

Introduction Section I 0

I 20

1. INTRODUCTION

Thiz report. documents the third year of work on the Program Reference

Language project (PRL), which Is a basic research effort aimed at the creation of

a mechanism for flexibly identifying the interesting portions of programs. During

t his year we focused on the Issue of developing a means of expressing the types of S

queries identified earlier as within the province of the PRL. We studied both the

structure of the actual query language and the design of the user interface.

0

The PRL is designed to allow the user to describe a piece of a program so

that an automated search mechanism can retrieve any matching program frag-

ments. An extended PRL might also allow the user to specify transformations to

be performed on a selected set of program fragments, but until we have time to

develop and classify a useful set of such transformations, we consider only the

problem of specifying and performing searches. The work which preceded this 0

study is discussed In length in the annual reports for the first and second years of

research and will be recapped only briefly below. (See "Searching a Knowledge

Base of' Programs and Documentation," (Shapiro-83] and "An Informal Study of 0S

Program Compreh,,nsion," [Domeshek-841 for more details.) This document

focuses or) the design of the PRL Picture Language, the pictorial Interface to the

t derlrving (kit ath)fso,

-1-

* .

Introduction Section I 0

A [1.1 OVERVIEW
N•

E:arlier PIRL research led to the definition or the Extended Program Model

(FEPM) [Shaplro-83i. a database which holds multiple representations of computer

m programs. The particular forms in which programs were to be stored, the types .

of analyses required to generate these representations, and the information made

available by these analyses were considered. Viewing the EPM as a database A

leads naturally to a view of the PRL as a database query language. Our goals for 0

the tRIL. combined with our design for the EPM, guided us in the design of the

query language.

10

Study of existing database query languages indicated that the task of

designing a formal query language would not be trivial. Although the definition

rf of a language capable of expressing the required searches might be stralghtfor- 0

ward, such a language would not be easily usable by programmers. However,

such a formal basis is essential for the PRL, if only for internal use. Thus, while

some time was spent studying the issues of a formal query language, the majority .

of the effort wasq spent investigating the possibilities of two options for more

"friendly" query languages that could be translated to the formal language.

The first option considered was a limited natural language Interface that

wa.s designated the i'RI, Natural Language (PRL/NI,). There are already several

natural language interfaces designed for database applications, and early I1I. 0

ex: inp1i I Ivs phrased sample queries In this manner. Our own experlence

wit h Frl giish rend,.rings of I'10, querles caused us to believe t hat they tended to

oh.,i-ire th,, rg ula:rity of th,' actual relatIonshIps being expressed. A survey of 5

th.i literatie ri,l,'d rianv lroblems complIcatllng tle design of a eonpact, and

-2-

• ""... •

Introduction Section 0

consistent subset of English intended for use as a query language.

The second option, and the one on which we concentrated, was a pictorial

interfm-e. designated the I>RL Picture Language (PRL/PL). This approach was

originally inspired by the Query-Ily-Example (QBE) database query language

,Zloof-1977]: however, the Picture Language is considerably different from QBE.

In the IPRL. obvious specific knowledge about the structure of the database has

been incorporated to increase its power and decrease its complexity. The essen-

tial idea behind QtIE and PRL/PL Is that a user partially sketches out the plc-

- ture of the requested Item. For the PRL, this means specifying an arrangement

of program fragments that characterizes the desired part of the program.

0

1.2 RESEARCH OBJECTIVES

Some of the key research issues driving the PRL effort are:

i. What are the most useful ways of referring to parts of a program? Said
in a different way, what vocabulary do programmers currently use to
describe portions of their programs?

2. *hall information must be included In a knowledge base about pro-
grams and documentation in order for It, to support program search?

3 What information must be Included In such a knowledge base for it to
support a variety of intelligent tools for accessing and manipulating

4. I ik should Information of this kind be represented?

5ow s(\h%ould applecation specific knowledge be Included?

6. [ho% :in i ,ser-s pJpie(l assertl b s and other (-(i)'lntat bio be w(quired
:ain(I ilt'gr:stIed Int o a kn howledge l)aMe for uise It prograiin referen'Ing and

r I :r.K-

-3-

Introduction Section 1

7. How can search requests be expressed in a uniform reference language?

8. \Vhat form of a search mechanism Is required to Implement these refer-
ence requests?

9. How can these searches be performed efliciently? In what ways can
se:('ch be limited or deferred in order to maintain good response time?

1.3 GUIDE TO READING

The following sections provide details about the PRL. Section 2 introduces

the PRL Picture Language (PRL/PL) and gives examples of Its usage. Section 3

discusses the PRL formal language (PRL/FL). Section 4 provides a description of 0

. the editor interface for the PRL/PL; section 5 discusses some of the problems still

rmaining with the PRL/PL and PRL/FL and our future research plans. This
-'S

reporI concludes with discussion of key research personnel and their activities. •

-4-

r.-°-.-"

PRIL Picture Language: PRL/PL Section 2 .

2. PRL PICTURE LANGUAGE: PRL/PL

2.1 INTRODUCTION TO PRL PICTURE LANGUAGE

The PRL Picture Language provides a user friendly Interface, making It

easy for programmers to specify searches through prc .- " freely combining

information from the multiple representations of the program maintained by the

Extended Program Model, or EPM. There Is a formal mapping from these pic-

tures to the PRL Formal Language. An underlying operational semantics for the

Formal Language thus provides a formal means for interpreting pictures

expressed in the Picture Language.

The PIi'PL is similar to QBE in that a query Is specified by describing a

typical item that would satisfy the query; however, as the nau.c Implies, the

interface is picture oriented. QBE is designed for relational databases; its tem-

plateF are partially filled-In tables representing the various relations. Due to the

internal tree/network format underlying the EPM database, the PRI, Is not well

st:!t,(l to the relational model. The templates for PRIL/PL queries reflect this

rit work struciiir in that a major form of composition is nesting of boxes inside

ot heir hoxes.

"The 1 1 . Is Inten(d(d to be Intultive and easy to use for typical simple

r, Iij- t s- I , wer. It sh ares t he probl)em found In QIE In that com lex re (Iuests

*-5- 0

PRL, Picture Language: PRL/PL Section 2

heg'in Iit() rewiire comaplex temnplates. Sinle, the spatial relations of pieces or the

1I MI./ I I quecry tend to he meaningful, though, this problem should not he as

severe. Wit h the lPRL/I1L. the query Is composed of boxes that form a picture of

hei overall shape of the query, while in QBE. the user must work With mnany

sclp:i rte ti hles representing the database relations.

'Ihle goal in designing a pictorial query language Is to ensure that any query

specifiable in the formal language has at least one pictorial representation. The

iPRL/I3l. must:

* Provide a mapping to the formal query language 0

e Re si m pie and intuitive

e Retnin the integrity of pictorial query fragments across different contexts,

wiceh Implies a maintaining of composablity across different environ-

2.2 DESCRIPTION OF PRL/PL

l1;hIijrv queries are composed of boxes representing fragments of programs.

Th v k'(thillary of the iPiL/Pl, consists of all of the program fragments under-

'1-- !b% t h FXM I 'I ac h fragment Is represented by a box. The basic op',rat or

,It -TT1-il-hi-containment-, if ai picture shows a liox Inside another box, this

-r(-i H, : TI:t 11 ! _,:Iln st I he (Iat :i base in which Itit, fragmnents of code have t lie

PRL Picture Language: PRL/PL Section 2 .

-4

The picture representing the query "Find the FUNcTIONS that contain -0

1I,((IS" is shown In figure 1. Note that there is a box of type function with a

box of type loop inside of It. Fragments of code which are function definitions

that include loops will match this search template.

FUNCTION

LOOP

S

Figure 1 FIND THE FUNCTIONS THAT CONTAIN LOOPS

A c(rmv enti, n used in PPRL/Pi, pictures is that the object to be returned as

!i r,.-sult of he quijery Is shown In a highlighted box. (onsider the alternative

wrv ''Find :ill I,()i'S c'ortaine(d In .'UNCTIONS" shown in fIgure 2. Note S

th:i, ia h ox r,'prfsentlng the loop is now (iran with heavier lines. This query

-7-

.. 7, , , ,. , :: :

PRL Picture Language: PRL/PL Section 2 0

"- 0

"~ill re turn| a set' or loop!s aLs Its result., O

• _ FUNCTION."

LOOP

II

Figure 2: FIND THE LOOPS CONTAINED IN FUNCTIONS

Queries can be much more complex than these first examples. We will sur-

'eY the variations and additional features of the PRL/PL, Introducing each new

Feat ure wit h an illustrative example.

It is possihle to specify that an object contain more than one object. The

h#1.,, forin ofr suel :, oII) punol containment Is illustrated In figure 3, the pliture

r(prosc(rtiug the query "Find all I.''N(CTIONS containing LOOPS and I1.'-

-8-

PRL Picture Language: PRL/PL Section 2

K4 STATEMENTS.- The box representing the function now contains two other

boxes, one representing a loop, the other representing an if-statement. The search

is again intended to return a set of functions, but now only those that contain

WA both a loop and an if-statement are valid matches. Note that there Is an Implicit

conjunction of the Inner boxes.

FLINCT I ON

LOOP

I F-STATEMENTj

F'igure 3: P'INI) ALL FUNCTIONS CONTAINING LOOPS
AND IF7-STATEMIENTS

It. we wanited to performn the search "F-ind all FUNCTIONS containing a

S.()()l ' f01h'wed by' "In II-''''NE'' 'the gra phical query would1 look, like

PRL Picture Language: PRL/PL Section 2

Ul lhur, -I. Note the arrow drawn from the box representing the loop to the box
0

repr,,sentIng the if-statement; this Is the pictorial representation of precedence, or

textual ordering. It may be possible to extend this Idea to represent flow order-

ing, :s this also might be a useful search constraint and the Information can be
0

genmrated from the EPM. Precedence relations are restricted to apply to objects

taking part in a conjunction. Note that without the arrow, figure 4 becomes

identical to figure 3.

FUNCTION

LOOP

IF-STATEMENT

4 I

Vigrtnr,, 1: I.'Ni) ALL I.'1N('TIONS (ON'i'AININ(A I)O I)'OLL,)Wi,')
IBY AN I,'--TATi,\I'i'T

1-

. • ". . . . + . *.

PRL Picture Language: PRL/PL Section 2

The nesting of boxes within boxes Is not limited to a single level. For

example, the query. "Find all FUNCTIONS which contain LOOPS that contain

IF-STATEMENTS" Is Illustrated In figure 5. Again, multiple objects can be con-

tained and arbitrary precedence relations can be specified at any level of nesting.

FUNCTI ON

LOOP

IF-STATEMENT 5

* S

.I

Figure 5: FINI) AILL FUNCTIONS WHICH CONTAIN LOOPS
TI [AT CONTAIN IF-STATEMENTS

l)j,<.ts stored in the EPIM have an explicit structure. For example, a func-

tiiri ' ,, io, f o :I n(ifnc, paralricter-list, and body. Such named parts of n i

,t+.,.t :ir' : lhed lots ; Id Il1:1y bi S'(I I n ('reating the pictorial query. h'ie

-11- •

[. 0

PRL Picture Language: PRL/PL Section 2 -.

3 query "Find the FUNCTION named BAR" Is shown In figure 6 as an example.

In specifying the picture, the user asked to see the slot of the function box. By

placing the string "BAR" In the sub-box labeled name, the user specifies that the

string "BAR" must be contained In the name part of the function. When slots

are not used, the containment will be considered satisfied If it occurs In any of

the subparts of the outer object.

FUNCTION

NAME: BAR

PARAMETERS:

I BODY:

Figure 6: FIND THE FUNCTION NAMED BAR

-12- 0

* PRL Picture Language: PRL/PL Section 2 0

Additional relations are introduced through the vocabulary of object types.

For example, figure 7 Illustrates the specification of the query "Find all FUNC- -

TIONS that use the VARIABLE FOO." The box labeled uses represents a data

flow object in the EPM database. It has a single slot which holds the object that .

is being "used." Simllary, the relationship of one function calling another can be

represented by the containment of a calls box, another valid EPM object, which

in this case is shown from the control flow perspective. Since most Important

information about the program is represented explicitly in one of the views of the

EtPM. almost any Important statement about a program can be made In terms of

containment of objects.

13

.1.

.1

-13- o.1

N .- N..I

PRL Picture Language: PRL/PL Section 2

* FUNCTION -0

USES

VARIABLE

e. OBJECT: FO0

S

I S

2 S

Figure 7: FIND ALL FUNCTIONS THAT USE THE VARIABLE FOO

A pictorial query can be composed of more than one top level box. All

separ-itt sublctutres In the query that return some type or object must. return the

samne type, of object. The sets of that object type generated by the separate plc-

tures are tinloned together to form a single set as the answer to the entire query.

Thus having separate top level boxes Implies an Ol? operation, allowing the

rvesutlt, frruri several varlants of a simple query to be combined. For exaniple

figrure S shon%, t he pietutre for the query "Filnd all the F'UNCTIONS that contain

--14-

PRL Picture Language- P'RL/PL Section 20

r FUNCTION0

LOOP

0

Figre : FND LLFUNCTIONSCNA IGLOP
ORIF-STATEMENTS

.specil pair of boxes called AND and OR boxes are used to clarify

represent t ton of conjunctions and disjunctions. The boxes can be placed any-

* where normnal program object boxes are legal, but they have a special effect on

the Interpretation of the boxes they contain. Strictly speaking, these boxes are

riot vs eit it. :is nriv requests can be constructed without them. However, they .
:rv i i;)(1r' n io fronw a user interface persp~ectivye (i.e., they make the PL~ /l 1i

t i ,t fromn a mnatthennatical perspective.

PR, Picture Language: PRL/PL Section 2"

An AND box is satisfied If all the things it contains are satisfied. Figure 9

illustrates the use of an AND box to represent the query "Find the FUNCTIONS

containing LOOPS and IF-STATEMENTS." Note that every normal program

object box functions implicitly like an AND box as Illustrated by the equivalence

of figure 3 to figure 9. The primary use for AND boxes Is where the default

interpretation would be OR, such as within an OR box, or at the top level of the

query.
S

FUNCTION

AND S

LOOP

* IF-STATEMENT

0ig0Pr FIN) ALL FUNCTIONS CONTAINING LOOPS
ANT) ll-STATEMNENTIS

-16-| •

4PRI, Picture Language: PRL/PL Section 2

t An 01? box Is satlsfled If at least one of the things It contains Is satisfied.

Figure 10 ilustrates the use of an OR box to represent the query "Find the

F1*N('TIO.NS containing LOOPS or IF-STATEMENTS." Note that In this case,

- the 0OR box Is needed to force the desired Interpretation, rather than that gained

-by thie default, of figure 3; it should be also noted that this Is the same query as

that represented in figure 8.

FUNCTION

OR

LOOP

IF-STATEMENT

F~igure 10: FIND) ALL VLTN(-iOINS CONTAINING LOOPS
0OR IF-STA'IKEMENTS

. 4
-17-

PRL Picture Language: PRL/PL Section 2

r \\When constructing a search template In the PRL/PL, users may also

specify objects whose appearance would Invalidate the match. The notation for

negation is to use a negative Image (e.g., reverse video) In displaying the negated3

box. In the figures Illustrated In this paper, slashes will be used to represent

reverse video. For example figure 11 shows the picture representing the query, K
"Find the FUNCTIONS that do not contain LOOPS." It Is also possible to

negate parts of the context for an object which must appear. For example figure

12 shows the query, "Find the IF-STATEMENTS which are not contained In

LOOPS."

PRL Picture Language: PRL/PL Section 2

FUNCTION

LOOP

Figure 11: FIND THE FUNCTIONS THAT DO NOT CONTAIN LOOPS

Z"

4PRI, Picture Language: PRL/PL Section 2

LOOP -

IF-STATEMENT

0

0]

Figure 12: FIND THlE IF-STATEMENTS NOT CONTAINED IN LOOPS

When usdin combination with precedence arrows, a negated box will only

di~qimlff t i n pfifwal matching code, fragment If the disallowed object appears in

Ow p'il' rel:W on to other objects. For example, flgure 13 represents the

lpr 'inid hE FU N(CTIONS that ha3ve a 1,001 not followed by an IF-

ST\Ii NIIN'l.'A inatehing F(0 A'O may contain IF-S7A T A EA7S, as

1 lfv:t-*iwrv sis a j.O01' which te'Xtutally follows them.

0 0

* -20-

5 PRL Picture Language: PRL/PL Section 2 0

FUNCTION _*

LOOP

IF-STATEMENT

U S

U •

Figure 13: FIND THE FUNCTIONS WHICH HAVE A LOOP
NOT FOLLOWED BY AN IF-STATEMENT

When a box representing a program object Is Instantiated, it Is a statement

th i sich an obJect must be present for a candidate region of code to be a suc-

(.es. fil n iteh; all that Is required Is that one such object exist. Thus, all objects
40

in IPRL/ . queries are, by default, assumed to be existentially qliantlfled.

"lero, :tr(,) ther possi)le imeanings a user might want to express. The

l'1? I J/1'1lI h I Slw i xphI s)eciftl(ation or eIther universal quantIfleatlon or

-21-

i - "

PRL, Picture Language: PRL/PL Section 2

integer range,, for eardinality constraints on program objects. The operation of

negation also ha-s an implicit effect on the quantification of the negated terms.

Figure 14 depicts the query, "Find the FUNCTIONS In which all LOOPS

contain IF-STATEMENTS." Compare this with figure 5; the two differ only In

mere existence of a LOOP containing an IF-STATEMENT is not enough to

guarantee that a FUNCTION wiii pass the test. If there are other LOOPS con-

tained in the FU~NCTION which do not contain IF-STATEMENTS, then the

FUNCTION will fall to satisfy the specified condition. Also note that It Is not

required that a FUNCTION contain any LOOPS to pass the test; If It has no

LOOPS. then all the LOOPS It has contain IF-STATEMENTS. (Or, to put It

another way, there Is no LOOP which does not have an IF-STATEMENT.)

-22-

PRL Picture Language: PRL/PL Section 2 0

FUNCTION

LOOP FALL

IF-STATEMENTS

U S

Figure 14: FIND THE FUNCTIONS IN WHICH ALL LOOPS CONTAIN
IF-STATEMENTS

Figure 15 gives an example of a PRL/PL query that contains a cardinality

:,)rstraint A cardinality constraint can be any number of natural numbers or

natural number ranges. The figure represents the query, "Find the FUNCTIONS

which c(twlti 2 LOOPS that contain IF-STATEMENTS."

-23-

S

* PRL Picture Language: PRL/PL Section 2

FUNCTION _

LOOP 2

IF-STATEMENT

S

U1 0

Figure 15: FIND THE FUNCTIONS WHICH CONTAIN 2 LOOPS THAT
CONTAIN IF-STATEMENTS

:. -1

Figure 16 shows an example with a negated box. The query means "Find

the FUNCTIONS which contain an IF-STATEMENT not contained In a LOOP."

Note that the quantification on the negated LOOP box has effectively been

flipped to universal. The query means that for all the LOOPS in the FUNC-

TION, there is an IF-STATEMENT not contained in any of them. If the

quantification had not been changed, the query would require the existence of

some LOOP that did not contain an IF-STATEMENT, and other LOOPS in the

-24-

2S

PRL Picture Language: PRL/PL Section 2

* FUNCTION could still exist that did contain an IF-STA TEMENT.

~FUNCTION

II LOOP

SAATEMEN

I

* _Figure 16: FIND THE FUNCTIONS WHICH CONTAIN AN IF-STATEMENT
NOT CONTAINED IN A LOOP

The PRL/PL can handle query meta-variables. The notation for these varl-

ables is a character string surrounded by angle brackets. For example, <foo>,

<x> and <this-s-a-variable> are all valid query meta-varlables. Such vari-

ables may be contained in a box and are bound to a set of program objects of the

type represented by that box. The effective binding or a query meta-variable is
I

the intlersection of the sets generated by its several uses in a query.

-25-

- . .

N I F. r .. , , um

PRL Picture Language: PRL/PL Section 2 -

Meta-variables are generally Introduced Into a query to designate the same

object as It appears In more than one context. For example, figure 17 illustrates

the query, "Find all FUNCTIONS that USE a VARIABLE before SETTING that

VARIABLE." Note that the meta-varlable <x> appears In two places In the

query, and Is meant to refer to the same object. In this case, <x> represents a

variable that is first used and then set.

FUNCTION

USES

a VARIABLE

< X >

0

U o

SETS

u VARIABLE

< X>

Figure 17: FIND THOSE FUNCTIONS THAT USE SOME VARIABLE BEFORE
SETTING THAT VARIABLE

* -26- S:

PRL Picture Language: PRL/PL Section 2 S

Actually, the query in figure 17 does not accomplish what was probably

intended: checking for any use of a variable before it receives an Initial value.

Figure 18 accurately captures the intended meaning and Illustrates the use of

negation In combination with the precedence relation. Figure 18 translates as

"Find the FUNCTIONS that do not SET a VARIABLE before USING that

VARIABLE." Again note that <x> Is used twice In the query and is intended

to refer to the same variable name.

FUNCTION

SETS

. "

U USES

VARIABLE

< x>

Figure 18: FIND THOSE FUNCTIONS IN WHICH A VARIABLE IS NOT SET
BEFORE THAT VARIABLE IS USED S

-27-

PRL Picture Language: PRL/PL Section 2

m* Figure 18 makes use of many of the features of the PRL/PL and still

manages to maintain a high degree of comprehensibility. However, as Illustrated

by the example In figure 17, PRL/PL offers no protection against sloppy thinking.

Fm 0

-28-

3 o0

S

I

*1

-28-:1
S

I --

Formal Query Language: PRL/FL Section 3 .

U S

3. FORMAL QUERY LANGUAGE: PRL/FL

The PRL Formal Language Is Intended to serve as an Internal form for PRL

queries. It should be both unambiguous and suitable for machine Interpretation.

It Is possible that In the future there will be other external forms of the PRL In

addition to the Picture Language. At such time, the Formal Language would

serve as the common underlying representation. Since the PRL/PL may become

cumbersome or counter-intuitive for some complex requests, the Issue of a

Natural Language Interface may be considered In the future.

The current syntax of the PRL/FL is presented In BNF form in figure 19.

This particular rendition is presented In prefix operator form and makes use of

some rather long-winded keywords; It Is still under development.

*1 S

The least satisfactory aspect of this specification for the PRL/FL Is Its han-

dling of precedence relations. The problem Is that a precedence graph which Is

only constrained to be non-cyclic is transformed into a set of (possibly nested)

binary relations. This may force some of the terms to be duplicated. We would

like the PRL to keep track of the fact that such duplications are merely artifacts 2:1
of the translation; It should create some sharable structure to represent the dupli-

cated sub-queries.

-I
-2"9-il

r. ' '-*-* *,

Formal Query Language: PRL/FL Section 3 0

QUERY = RETURN I CONTAINMENT I NEGATION
DISJUNTION I CONJUNCTION

RETURN = (RETURN CONTAINMENT)

CONTAINMENT = (CONTAINS OBJECT CONTAINABLE)

- NEGATION = (NOT CONTAINMENT)

DISJUNCTION = (OR QUERY*)

CONJUNCTION = (AND QUERY* ORDERING*)

ORDERING = (PRECEDES QUERY QUERY) i
(PRECEDES QUERY ORDERING)
(PRECEDES ORDERING QUERY)
(PRECEDES ORDERING ORDERING)

CONTAINABLE = NIL I STRING I VARIABLE I QUERY

* OBJECT = (TYPE REPRESENTATION QUANTIZATION)

REPRESENTATION = TEXT I SYNTAX I VARIABLE I QUERY

QUANTIFICATION = EXISTENTIAL UNIVERSAL I CARDINALITY

U CARDINALITY = A SET OF NONNEGATIVE INTEGERS OR RANGES OF
NONNEGATIVE INTEGERS

TYPE ANY VALID TYPE OF PROGRAM OBJECT KNOWN TO
THE EPM (CONSISTENT WITH THE STATED
REPRESENTATION

NIL AN EMPTY MARKER FOR BOXES WHICH ARE NOT
CONSTRAINED TO CONTAIN ANYTHING

VARIABLE = < STRING >

STRING OH COME ON!

Figure 19: PRL/FL: BNF SPECIFICATION

0-30- S

Formal Query Language: PRL/FL Section 3 0

-." .1•
5The open Issues mentioned earlier in the discussion of the PRL/PL are

really PRL/FL considerations. We know how we want the pictures to appear for

all cases of combinations of quantification and negation. We know how they

should be translated Into the Formal Language. The open questions have to do

with the interpretation of such queries. This Is the province of the interpreter of

" the PRL/FL.

The mapping between the PRL/PL and PRL/FL is fairly straightforward.

We already have a prototype unparser working which can take PRL/FL queries

and draw the appropriate pictures. The parser, which will map from pictures to

formal representation, will be part of the PRL/PL Editor Interface.

-31-

.". : -., °.: . .• . -! . -

PRL/PL Editor Interface Section 4

4. PRL/PL EDITOR INTERFACE

As Important as the PRL/PL is the means by which a user enters and

manipulates those queries. We are currently developing a prototype Interface for -

the language. The Interface is a graphical-style editor, with the characteristics of

a syntax-oriented editor; I.e., It knows about the PL and ensures that requests are 0

syntactically legal.

Given such a syntax editor for PRL/PL queries, the user can at all times S

see the whole evolving query as It is being composed and be certain that the

query Is syntactically valid. The query editor will take care of such layout IssuesI!
as scallng the boxes appropriately and positioning the boxes when precedence

relations are specified.

2 The prototype system is being developed on a Symbolics 3600 Lisp S

Machine, which has a high-resolution bit-mapped display terminal and mouse-

input support. For each representation In the EPM, there will be a set of object

types which may be Instantiated as boxes and used In queries. As an alternative 0

to typing in the name of the type of box to be instantiated, a complete catalog of

types will be available on a set of mouse-sensitive menus. As a simple extension,

the user may also maintain a library of previously constructed queries and S

query-fragnients. The contents of this library will also be available on a mouse-

',nVitlve, ienu. With this facility, commonly used queries or pieces of queries

will i'A)e ' Ily available. 0

-32-

. _ - .. -0

PRL/PL Editor Interface Section 4

Most of the operations required to specify PRL/PL queries will benefit from

the ability of a mouse to quickly designate a position on the screen. Placement

of boxes in other boxes Is natural with the mouse and easily transformable into

the corresponding PRL/FL statement. Similarly, selecting a box for negation or

as a return object is quickly accomplished and easily mapped to the formal

representation. Specification of precedence relations works just as smoothly with

a mouse.

Note that only boxes representing program objects will be displayed

negated; AND and OR boxes when negated will be transformed into the

equivalent positive statement through application of DeMorgan's Law. Also note

that boxes which have been designated as return objects cannot be negated and

that negated boxes cannot be selected as the query result.

-33-I

-33- '2

• .. "- . -

* Plans for Further Development Section 5

5. PLANS FOR FURTHER DEVELOPMENT

5.1 QUESTIONS/ISSUES

There are several representation issues that still must be addressed. One of

these involves the meaning of containmeit, which can be fuzzy and may vary

with the types of objects. While It Is clear what It means for one syntactic struc-

ture to contain another, it is less clear when considering more complex database

structures. When searching for structures containing a cliche, the object may be

distributed over several parts of a program. In this case, it may make sense to

Interpret containment only to require some overlap.

A problem In the PRL/PL involves the representation of multiple objects.

When multiple objects are contained in some enclosing object, they can be con-

nected Into an arbitrary precedence graph by specIfying directional arrows

between any two boxes. Of course It Is very easy to draw graphs that represent

unsatisflable conditions, as shown In figure 20. The system should be able to

detect such conflgurations and bring them to the user's attention.

-34-

II

Plans for Further Development Section 5 0

____ ___ ___ ___ ___ ___.1.

FUNCTION

LOOP

IF-STATEMENT

Figure 20: AN UNSATISFIABLE PRECEDENCE GRAPH

We are not satisfied that we have completely determined the correct

interpretation for all possible combinations of quantifiers and cardinallty. In par-

ticular, we do not yet feel comfortable with the interaction of these features with

negation. On the whole, though, the default cases seem to work well to express

useful queries. Improving our understanding of the underlying logic is one prob-

lem area to which we will be devoting more effort in the coming year.

-35- 0

SPlans for Further Development Section 5

5.2 FUTURE WORK

Part of our effort during the next year will be aimed at addressing the

unresolved issues In the specification of the PRL/PL and the PRL/FL. Work will

continue on the process of translating search requests In the PRL/FL to search

requests in the EPM. In conjunction with this, we will begin looking at the issues

of efficiently processing queries; part of this effort will be to refine the EPM

search methods. An additional task will be to examine the problems Involved In

updating the internal database during a user's editing session. We will try to

develop a strategy which allows for updates to the database only when necessary

so that an unreasonable amount of time Is not spent propagating changes. We

will also continue the study of alternate interface forms.

0

0

*30[

-38-

Personnel Section 6 O

6. PERSONNEL

- 01

6.1 PERSONNEL

4s 0

The Program Reference Language (PRL) research project Is being per-

formed within the User Aids Program of AI&DS, with Dr. Brian P. McCune, Pro-

gram Manager, as Principal Investigator. Other members of the AI&DS technical

staff who have contributed to the project include Jeffrey S. Dean, Eric A.

Domeshek, Michael A. Brzustowicz, Daniel G. Shapiro, and Susan G. Rosenbaum.

Dr. Brian P. McCune Is the Principal Investigator of the PRL project. He

received his Ph.D. in Computer Science from Stanford University in 1979; the

title of his thesis was "Building Program Models Incrementally from Informal

Descriptions." During the past decade, Dr. McCune has done research In the

areas of artificial Intelligence, software systems, and computer architecture, with

emphasis on artificial intelligence approaches to software development and
S

maintenance, Information retrieval, database management, hypothesis formation,

planning, and distributed processing. He has been the principal Investigator of

research projects to select and design candidate AI tools for assisting in the

maintenance of Ada programs (sponsored by Rome Air Development Center), to

design an intelligent program editor for Ada, to determine the feasibility or

automatically generating operating systems, and to design and Implement a

knowledge-based system for textual Information retrieval. Dr. McCune is on the

-37-

• . ' .• ", . .: • •,. 0

Personnel Section 6 o

Editorial Advisory Boards of Defense Electronics and The Artificial Intelligence

Report. He has been Invited to discuss the application of artificial Intelligence to

defense problems numerous times, both at workshops and in published papers.

Jeffrey S. Dean Is project leader of the PRL project. He is also currently

leading the related Intelligent Program Editor project, and was previously the -

leader of the AI&DS Software Maintenance Project, which defined advanced Ada

tools for software maintenance. He received his Masters degree In Computer

Science/Computer Engineering from Stanford University, where he worked on the

automatic derivation of operating systems. His main research interest Is the

application of Al to software tools. He came to AI&DS In January 1981 from

Bell Telephone Laboratories, where he was involved In the development and

maintenance of the UNIX operating system and Its utilities.

Daniel G. Shapiro has been contributing to the PRL project since joining

AI&DS in October 1981, after receiving a Masters degree In Electrical Engineer-

Ing and Computer Science from the Massachusetts Institute of Technology. His

research Interests Include artificial Intelligence, expert systems, and software

engineering. At AI&DS he has done work on expert systems for program and
0

documentation editing, Information retrieval, and mission planning. Currently,

he is the leader of the Battlefield Commander's Assistant project, a basic research

effort aimed at developing the Al technology required to assist battalion and/or

brigade commanders in planning and evaluating tactics for combat situtttions.

ttis masters thesis, entitled "Sniffer: A System that Understands Bugs," Involved

the design and Implementation of a semantics-based debugger for the

Programmer's Apprentice project at the MIT Artificial Intelligence Laboratory.

-38- "

* S

_ _ _ _ _

- .--.

Personnel Section 8

He also taught software engineering courses at MIT.

Eric A. Domeshek was responsible for much of the PRL experiment which

studied how people think about programs and has played a key role In the

development of the PRL Picture Language. Mr. Domeshek received an A.B. in

Physics from Harvard College. His course work also emphasised computer science

and cognitive science. His technical interests are In artificial intelligence, particu-

larly knowledge representation, and computer graphics.

Michael A. Brzustowlcz has been Involved with the PRL project since Join-

Ing AI&DS In November 1983. He received an S.B. degree In Physics from the

Massachusetts Institute of Technology In 1979 and received his M.S.E.E. In Coin-

nro puter Engineering from Carnegie-Mellon University In 1980; his thesis work was

entitled "A System for the Implementation of Models of Reasoning with Uncer-

tain Data." Mr. Brzustowlcz's current areas of interest Include artificial intelli-

gence, software engineering, ergonomic user interfaces, and computer-aided

processes. Prior to joining AI&DS, Mr. Brzustowicz worked for the Development

Systems Software Group of the Semiconductor Division of Texas Instruments,

and for the Unix Development Group at Bell Laboratories. S

Susan G. Rosenbaum has been working with the PRL project since joining

AI&DS In June 1984. Her areas of Interest Include software engineering, artificial

Intelligence, and man-machine Interfaces. She received a B.A. degree In

Matiematlcs from the University of Texas at Austin in 1974 and an M.S. degree

in Computer Scence from the University of Texas at Arlington In 1979. Prior to

joining AIA'I)S, shle worked at Compu ter*Thought Corporation on the design and

-39-

Personnel Section 6 S

g, development of a prototype tutoring system for the Ada language and at Texas

Instruments In the Computer Science Laboratory.

6.2 INTERACTIONS

Dr. Brian P. McCune is an Associate Editor of The AI Magazine, the publi-

cation of the American Association for Artificial Intelligence. He Is on the Edi-

torial Advisory Board of Defense Electronics and also The Artificial Intelligence

Report.

Dr. McCune presented a paper on an Intelligent Program Editor at a

Software Engineering Technology Review sponsored by the Navy (July 1984). He

was an invited speaker to COMPSAC '83 (November 1983) and EASCON '83

(September 1983), and was an invited participant to Knowledge Based Software

Assistant Workshop at AAAI-83 (August 1983). He attended the NAVAIR/ONR

Aviation Software Workshop (October 1983). the DARPA Formalized Software

Development Workshop (November 1983), the Conference on Inference Theory

and AI (November 1982), and the Software Maintenance Workshop (December

1983).

Dr. McCune attended the Eighth International Joint Conference on

Artificial Intelligence (IJCAI-83), held in Karlsruhe, Germany, in August 1983

and the National Conference on Artificial Intelligence (AAAI-83), Washington

).(., August 1983.

-40-

Personnel Section 6

*Dr. McCune has been Interfacing heavily with both operational and

developmental commands In the Air Force and elsewhere In DoD and Industry In

order to understand current and future problems or software development and

maintenance. Within the Air Force, Dr. McCune has met with personnel at the

Air Force Office of Scientific Research, Rome Air Development Center, Wright

Aeronautical Laboratories, Foreign Technology Division, Strategic Air Command

headquarters, Air Force CommunlcationL Computer Programming Center, and

Air Force Satellite Control Facility. Elsewhere In DoD he has talked with the

Defense Intelligence Agency, Office of the Undersecretary of Defense for Research

and Engineering, Defense Advanced Research Projects Agency, DoD STARS Pro- 0

gram, Ada Joint Program Office, Office of Naval Research, Naval Electronics Sys-

tems Command, Naval Sea Systems Command, Naval Intelligence Command,

Naval Research Laboratory, Naval Ocean Systems Center, Naval Intelligence

Center, Naval Weapons Center, Army Research Office, Army Center for Tactical

Computer Systems, and Army Ballistic Missile Defense Advanced Technology

2 Center.

Dr. McCune has also visited numerous universities and research centers to

assess the state of the art In automatic programming at first hand. Places visited

Include Harvard University, Massachusetts Institute of Technology, Carnegie-

Mellon UniversIty, Duke University, University of California at Irvine, and Stan- .]

ford Tnlversity.

Jeffrey S. Dean presented a paper on an Automated Tool for Software

l)ocumentatlon at a Software Engineering Technology Review sponsored by the

Navy (.Jili 1984) lie gave a paper on a study of software maintenance at the

-41-

Personnel Section 6

Software Maintenance Workshop (December 1983). He attended the 7th Interna-

tional Conference on Software Engineering (March 1984); the Symposium for

Application and Assessment of Automated Tools for Software Development

(November 1983) and AAAI-83.

Daniel G. Shapiro was a panelist at the ACM SIGSOFT/SIGPLAN

- Software Engineering Symposium on High-Level Debugging, held in Pacific

Grove, California, in March 1983. He presented papers on the PRL at the IEEE

Trends and Applications Conference (May 1983) and the Seventh International

Conference on Software Engineering (March 1984). He presented papers on Infor-

mation retrieval at AAAI-83 and IJCAI-83.

Eric A. Domeshek attended the Symposium for Application and Assessment

of Automated Tools for Software Development (November 1983) and AAAI-83.

Michael A. Brzustowlcz attended the Symposium for Application and

Assessment of Automated Tools for Software Development (November 1983).

Susan G. Rosenbaum attended the ACM Conference on Lisp and Func- S

tional Programming (August 1982) and the National AdaTEC Conference

(October 1983).

-42-

•. " " .. 0 -. S

Personnel Section 6 0

* 6.3 PUBLICATIONS

Members of PRL project staff have published a number of papers. A cumu-

lative chronological list of publications appearing In technical Journals and

conference proceedings Is listed below: 0

Thomas L. Adams, Andrew S. Cromarty, Brian P. McCune, Gerald A. Wilson,
Milton R. Grinberg, James F. Cunningham, and Carl J. Tollander, "A
Knowledge-Based System for Analyzing Radar Systems," invited paper,

- Proceedings, Military Microwaves '84, London, England, October 1984.

Daniel G. Shapiro, Jeffrey S. Dean, and Brian P. McCune, "A Knowledge
Base for Supporting an Intelligent Program Editor," 7th International
Conference on Software Engineering, March 1984. (See Appendix A.)

Andrew S. Cromarty, Daniel G. Shapiro and Michael R. Fehllng, "Still
Planners Run Deep: Shallow Reasoning for Fast Repianning," Proceedings,
Society of Photo-Optical Instrumentation Engineers, Technical Symposium
East, 1984, to appear.

Jeffrey S. Dean and Brian P. McCune, "An Informal Study of Software
Maintenance Problems," Proceedings, Software Maintenance Workshop,
December 1983. (See Appendix B.) 0

Brian P. McCune and Jeffrey S. Dean, "Trends for Advanced Software
Tools," Defense Science 2001+ (reprint of EASCON '83 paper),
December 1983.

'ij Brian P. McCune, Richard M. Tong, Jeffrey S. Dean, and Daniel G.
Shapiro, "RUBRIC: A System for Rule-Based Information Retrieval,"
Proceedings, COMPSAC 1983, November 1983.

Brian P. McCune and Jeffrey S. Dean, "Trends for Advanced Software
Tools," Invited paper, Proceedings, EASCON '83, September 1983.
(See Appendix C.)

Richard M. Tong, Daniel G. Shapiro, Brian P. McCune, and Jeffrey S.
Dean, "A Rule-Based Approach to Information Retrieval: Some Results and
Comments," Proceedings, National Conference on Artificial Intelligence,
Washington, D.C., August 1983.

Richard M. Tong, Daniel G. Shapiro, Jeffrey S. Dean, and Brian P.
McCune. "A Comparison of Uncertainty Calculi In an Expert System for
Information Retrieval," Eighth International Joint Conference on
Artificial Intelligence, Karlsruhe, West Germany, August 1983.

Brian P. McCune and Robert J. Drazovlch, "Radar with Sight and 0
Knowledge," Invited paper, Defense Electronics, August 1983.

-43-

Personnel Section 8

Richard M. Tong and Daniel G. Shapiro, "An Experiment with Multiple
Valued Logics in an Expert System," Proceedings of the IFAC Symposium on
Fuzzy Information, Knowledge Representation and Decision Analysis,
Marseille, France, July 1983.

Daniel G. Shapiro and Brian P. McCune, "The Intelligent Program Editor:
A Knowledge-Based System for Supporting Program and Documentation
Maintenance," Proceedings of the Trends and Applications Conference of 0

the IEEE, May 1983.

Gerald Wilson, Eric A. Domeshek, Ellen L. Drascher, and Jeffrey S. Dean,
"The Multipurpose Presentation System," Proceedings, Very Large Data
Base Conference, 1983. •

Jeffrey S. Dean and Brian P. McCune, "Advanced Tools for Software
Maintenance", Rome Air Development Center, RADC-TR-82-313, December
1982.

Brian P. McCune, Jeffrey S. Dean, Daniel G. Shapiro, and Richard M.
Tong, "Rule-Based Information Retrieval," Workshop on Intelligence
Applications of Advanced Computer and Information Technology: Focus on
Artificial Intelligence, Office of Research and Development, Office
of Scientific and Weapons Research, Central Intelligence Agency,
Washington, D.C., November 1982.

Robert J. Drazovich, Brian P. McCune, and J. Roland Payne, "Artificial
Intelligence: An Emerging Military Technology," invited paper,
Conference Record, EASCON '82: Fifteenth Annual Electronics and
Aerospace Systems Conference, Institute of Electrical and Electronics
Engineers, Inc., Washington, D.C., September 1982, Pages 341-348.

Brian P. McCune, editor, "Al at AI&DS," The AI Magazine, Volume 2,
Number 2, Summer 1981, pages 44-47.

Daniel G. Shapiro, "Sniffer: A System that Understands Bugs,"
MIT/AIM/638, June 1981.

Brian P. McCune, "Incremental, Informal Program Acquisition," 6
Proceedings of the First Annual National Conference on Artificial
Intelligence, Stanford University, Stanford, California, August 1980,
pages 71-73.

Daniel G. Shapiro, "A Proposal for Sniffer, A System that Understands
Bugs," MIT/Al Working Paper 202, July 1980.

Cordell Green, Richard P. Gabriel, Elaine Kant, Beverly I. Kedzlerskl,
Brian P. McCune. Jorge V. Phillips, Steve T. Tappel, and Stephen J.
Westfold, "Results In Knowledge-Based Program Synthesis," IJCAI-79:
Proceedings of the Sixth International Joint Conference on Artificial
Intelligence, Volume 1. Computer Science Department, Stanford
U TniversIty, Stanrord, California, August 1979, pages 342-344.

-44-

IFI
Personnel Section 6

George R. Lewis, J. Shirley Henry, and Brian P. McCune, "The BTI 8000:
Homogeneous, General-Purpose Multiprocessing," In Richard E. Merwin, .
editor, 1979 National Computer Conference, AFIPS Conference
Proceedings, Volume 48, AFIPS Press, Montvale, New Jersey, June 1979,
pages 513-528. 1
Cordell Green arnd Brian P. McCune, "Knowledge-Based Programming
Applications," Ayplications of Image Understanding and Spatial
Processing to Radar Signals for Automatic Ship Classification:
Proceedings of a Workshop, Naval Electronic Systems Command,
Washington, D.C., February 1979, pages 94-99.

Cordell Green and Brian P. McCune, "Application of Knowledge-Based
Programming to Signal Understanding Systems," Distributed Sensor •
Nets: Proceedings of a Workshop, Computer Science Department,
Carnegie-Mellon University, Pittsburgh, Pennsylvania, December 1978,
pages 115-118.

Brian P. McCune, "The PSI Program Model Builder: Synthesis or Very
High-Level Programs," Proceedings of the Symposium on Artificial 0
Intelligence and Programming Languages, SIGPLAN Notices, Volume 12,
Number 8, SIGART Newsletter, Number 64, August 1977, pages
130-139.

~0

,-45-

References Section 7

7. REFERENCES

1. Domeshek, Eric A., Shapiro, Daniel G., Dean, Jeffrey S., McCune, Brian
P., "An Informal Study of Program Comprehension", AI&DS TM-1014- -

3, March, 1984.

2. Shapiro, Daniel G., "Sniffer: A System that Understands Bugs", AIM-
638, Artificial Intelligence Laboratory, Massachusetts Institute of Tech- S
nology, Cambridge, Mass., 1981.

3. Shapiro, Daniel G., McCune, Brian P., "Searching a Knowledge Base of
Programs and Documentation", AI&DS TM-1014-2, January 1983.

4. Shapiro, Daniel G., McCune, Brian P., "A Knowledge Based System for 0
Supporting Program and Documentation Maintenance", Proceedings,
IEEE Trends and Applications, 1983, pp. 226-232.

5. Shapiro, Daniel G., Dean, Jeffrey S., and McCune, Brian P., "A
Knowledge Base for Supporting an Intelligent Program Editor",

" Proceedings, 7th International Conference on Software Engineering,
1984.

6. Zloof, M. M., "System for Business Automation," Communication's of
the ACM, 1977. Vol 20, No. 6. pp. 385-396.

tU S

S

-46-

- .. -. . ° . .Z . . .

4 Appendix A .

APPENDIX A.

-0

This appendix contains a reprint of the paper "A Knowledge Base for
Supporting an Intelligent Program Editor," by Daniel G. Shapiro, Jeffrey S.
Dean, and Brian P. McCune.

-47-

p ,

0 ~-47-

[Seventh International Conference on Software Engineering, March 1984.1
1 of 6

A KNIOWLEWflE BASE FOR SUPPORTING AN INTELLIGEW tOGRAM EDITOR 0

Daniel G. Shapiro

Jeffrey S. Dean
Brian P. McCune

Advanced Information & Decision Systems

201 San Antonio Circle
Mountain View, CA 94040

LBSTIACT context of a program search.

This paper presents work Ln progress towards a 2. MOTIVATION
program development and maintenance aid called the S
Intelligent Program Editor (IPE), which applies
artificial intelligence techniques to the task of An intelligent editing system is a sophisti-

manipulating and analyzing programs. The IPE is a cated tool for developing and maintaining programs.
knowledge based tool: it gains its power by expli- The goal, insofar as it is possible, is to decrease

citly representing textual, syntactic, and many of the amount of information a programmer needs to
the semantic (meaning related) and pragmatic supply in order to create and maintain a program,
(application oriented) structures in programs. To and to simultaneously increase the reliability of
demonstrate this approach, we implement a subset of the resulting code. This can be accomplished by S
this knowledge base, and a search mechanism called incorporating knowledge about the structure and

the Program Reference Language (PRL), which is able intention of programs into the editing tools used

to locate portions of programs based on a descrip- to develop and maintain them. Perhaps the best way

tion provided by a user. to illustrate this approach is to present an
allegory having to do with the production of a
technical manuscript.

This research was supported by the Air Force OfficeSof Scientific Research under contract F49620-Bl-C- Assume that there i.s a manuscript which needs
ofSthe Office of Naval Research under contract to be typed for publication. If it is given to a
N007,-he2Officeof aval Reearch ndero n cntrt typist who does not speak English, the result would
N00014-82-C-0119, and Rome Air Development Center be, at best, a word-for-word copy of the original
under contract F30602-80-C-0176. manuscript. If it is given to an English-speaking

typist, simple errors, such as misspellings and
1. IN'MDUCTION punctuation problems, might be fixed during the

typing process. If the manuscript is given to an
English teacher moonlighting as a typist, the

IThe effort and expense involved in software result might well be a version in which the prose
maintenance have been recognized as a major limits- is smoothed and otherwise improved. Finally, if
tion on the capabilities of current software sye- one is lucky enough to find a typist familiar with

teas. In a study on software maintenance issues in the domain of discourse (such as the author), the

the Air Force. we found that the process of resulting document might even have factual errorscomprehending the term and function of existing corrected and incomplete thoughts identified.

software (i.e., what it does and how it does it) is
the largest task in the maintenance process [2]. A programmer selecting an editor system for

writing code is in a similar situation. A standard
The basic cause of this "comprehension prob- text editor is comparable to the non-English-

lem" is the loss of knowledge during the program- speaking typist; text appears exactly as it is
ming process, caused by factors such as poorly typed, with no enhancements. The English-speaking
written software, inadequate documentation, pro- typist could be compared to a syntax-oriented edi-
grammer forgetfulness, and personnel turnover. To tor, which can eliminate syntactic program errors
address these issues, we have started a project to and misspelled keywords. The English
develop intelligent, knowledge-based programming teacher/typist knows about the language itself but
aids, designed to help the programmer overcome lim- not about the content of the thoughts. This situa-
itations of more traditional tools. This paper tion is comparable to a programming language-
describes the initial phase of one of these tools, specific editor which applies knowledge about the
an editor known as the Intelligent Program Editor domain of programming; this editor can instantiate
(IPE). The following sections discuss the motiva- general programming techniques, catch certain types
tion behind intelligent editing, the design of an of semantic errors, make style suggestions, and
intelligent editor, a database for the editor, and improve the overall flow of the program. The
a scenario demonstrating an actual implementation technical typist who understands the content of
of a portion of the IPE's database, used in the what is being said is analogous to an editor that

- . -- . ,.- --- -

2 of 6

utilizes knowledge about the application domain; it 4. TrH EXTENDED PROGRAM MODEL
can help in algorithm development and can catch
certain types of pragmatic errors which are depen-dent upon the specific application domain. The Extended Program Model (EPM) provider. a

new way of representing and accessing programs by

3. "KS xIfwruLICKKT PRORAM EDITOR defining a vocabulary for discussing programs which
uses terms that are much closer to the ones which
users naturally employ. The EPH provides this

The Intelligent Program Editor (IPZ) described capability through the use of a database that
in this paper most closely corresponds to the represents the structure of programs from a variety
English teacher/typist mentioned above, in that it of views. The EPM can form the backbone for a
will support textual and syntactic manipulations, number of systems which exhibit a deep understand-

I and have the ability to assist in the implements- ing of the organizational structure and meaning of 0
tion of typical programming actions. This power is code.
obtained through the use of a database that expli-
citly represents the functional organization of The EPM is constructed in terms of two major

programs in terms of textual, syntactic, and subsystems (see Figure 1) : a program structures
intention-oriented structures. With this database, database and a search and update component called
the IPE is in a position to become more of a pro- the Program Reference Language, which provides

gramming environment than solely an editing tool. access to the database. In addition, the EPH will

In this vein, we are interested in addressing the contain a library of "rational form" constraints 0
following design goals 15]. that will monitor program composition for its

structure and intentional content. As a whole, the

The IPE should provide a means for naturally system can be thought of as a database management

incorporating documentation into the program system for creating and maintaining code. It pro-

development process. In our view, this requires vides a search language for accessing its
the ability to link documentation into the organi- knowledge, a facility for performing updates, as

zational stra. ure of a Drosram (similar to well as a set of semantic integrity and consistency
N Melson's 131 concept of Hypertext), and the ability constraints for monitoring the validity of the data
to actively use any information that is supplied it contains.
(to provide programmers with a motivation for
including descriptive data). In the IPE, documen- EPM
tation will provide input to a program search
facility.

The system should support incremental program
analysis. The object here is to employ the SEARCH MANIPULATION

system's understanding of program structure to (PRL)

catch syntactic a's! certain semantic errors prior
to execution. Examples include identifying vari-
ables that are accessed before being set (via data
flow analysis) and detecting programming cliches
that have been incompletely implemented. There is
also a role for error prevention: some editors PROGRAM STRUCTURES

(e.g., (6]) prevent syntactic errors from ever DATA BASE
occurring.

The IPE will allow the user to employ alter-
nate program visualizations. This means allowing SEMANTIC INTEGRITY
the programmer to examine or modify code through t CONSISTENCY CONSTRAINTS
any of the representations mentioned above. For
example, a syntax based approach might be appropri-
ate during program construction, while a graphical
data flow display may be useful within the debug-
ging process.

All of these capabilities require the use of Figure 1. The Extended Program Model

multiple program representations, as well as
mechanisms for searching and manipulating the 4.1 THE PROGRAM STRUCTURES DATA BASE
information they contain. Therefore, in the first
phase of the IPE project, we constructed a proto- The EPM's program structures database is con-
type version of this program database, called the structed in terms of a collection of representa-
Extended Pro ram Model (EPH), and demonstrated it tions which reflect the transition from a syntactic
in the context of program search. The remainder of to a more intention-oriented analysis of code (Fig-
this paper discusses the EPH and the search example ure 2). We are considering these viewpoints to be
that was produced. abstract data types which facilitate different

sorts of retrieval operations.

3 of 6

OMtLKNIATION defined a Library of such TPPs 141 (he uses the
term cliche; in this paper, we use both terms

INTENTIOM. AGGAEGATS interchangeably).

The remaining databases (intentional aggre-

ec gates and documentations) provide methods for asso-
(CCKS) ciating the intentions behind a program with

specific features of code. They capture pragmatic

knowledge relating to the domain of application of
SFARthe program. Intentional aggregates are a type of

formal documentation that allow the association of
larger program fragments with key concepts (sup-

COTM5 451 C plied by the user). They can be used to collect a
M set of TPPs and other program segments that imple-

ment a single conceptual function; for example, a
svsTAX collection of TPPs representing queue operations

might be grouped (by the user) into an intentional
aggregate representing a scheduler.

The documentation database allows the user to
figure 2. Representation Levels in the EPM associate comments with any of the program features

already described. At the lowest (i.e.. textual)
level, this would take the form of in-line com-

The textual representation gives the EPH the ments. At other representational levels, the user
view that most text editors provide. It is a low- could, for example, document the data flow in a
level approach, concerned with words and delim- particular module (saying why an input-output rela-
iters, but it allows for important textual search tionship occurs), justify his use of particular
operations. TPPs, or explain why particular syntactic features

are employed. The advantage of this technique over
The syntactic viewpoint embodies the rules of current documentation practice is the ability to

grammar for particular programming languages. The make a direct association (via links maintained by
syntactic database provides the EFH with a vocabu- the IPE) between the documentation and what it

lary for programming constructs such as "for" talks about, at an appropriate conceptual level.
loops, parameters, and procedures.

The next level of representation is the flow 4.2 KNOWLEDGE AOQUISITION
level, which provides standard data and control
flow information. It provides a vocabulary relat-
ing to the logical structure of programs. Since the EPM's database is intended to sup-

port an actual editing system in the near future.
The segmented parse representation defines a it is important to address the question of where

vocabulary for a program in terms of its component its information is obtained. In our approach, the
data and control flow. For example, iterations are different knowledge sources are acquired in part
decomposed into a set of roles which identify the from the user, and in part by automatic means.
subfunctions of a loop. In the breakdown we are Specifically, the syntactic representation can be
using, loops contain generators, filters, termina- obtained directly from the textual representation,
tors, and augmentations (71. Generators are seg- and the segmented parse viewpoint can be con- .'"-

meats which produce a sequence of values. They can structed through data flow analysis techniques of
be further refined into initializations and a body, the kind developed by Waters 17].
which is the portion that is executed many times.
Filters restrict that sequence of values. A termi- The TPP structures are harder to obtain.
nator is like a filter, except that it has the Recent research efforts indicate that general
additional potential to stop execution of the loop. recognition of cliches may be possible [1, but at
An augmentation consumes values and produces the current time, these techniques have not actu-
results. There are other vocabulary elements for ally been demonstrated. The EPM will use manual
describing straight line code. recognition techniques (at least until automatic

recognition techniques have been refined). There
The taxonomy discussed up to this point pri- are two manual recognition techniques planned for

marily captures information about the form of pro- the system. In the first, the user poin:s to a
grams (as oppov.e, to their meaning). The only piece of code and identifies it as being a particu-
semantic elements we have introduced describe the lar TPP (as a way of documenting the system); at
substructure of built-in entities such as loops, this point, once the scope has been narrowed down,
The next (more abstract) viewpoint considers pro- it may be possible to identify the subcomponents of
grams to be built of objects with stereotyped pur- these programming cliches automatically. In the
poses. These are called typical programming pat- second method, the user uses TPPs for program gen-
terns (TPPs). Examples of TPPs include variable eration (as in [81); by instantiating a TPP and
interchanges, list insertions, and hash table "filling in the blanks," the EPH can acquire all
abstractions. These abstractions are the tools the necessary information.
employed by every expert programmer. Rich has

• . ,0

• . 'd ,.a-. '2 . . - --. '4 -
" '

.;

4 of6
J
J

The 4-tentional aggregate and documentation representations do not necessarily have a one-to-
views must be wholly obtained from the user. At a one correspondence. The information in each data-
minimum, the EPH planned consistency mechanisms base is either automatically derived, or can be
will identify any of this information that may be reasonably obtained from the user. In situations
out of date due to modifications to the code. where the latter is necessary, we have assumed that

information may be provided in an incomplete form.
5. Tna ?KOG AM REFEECE IA1CUALE

5.1 CODE PAIN4TING

In order to demonstrate the feasibility of the From a computational point of view, the main
EPM, we implemented a portion of the database problem involved with this multiple representation
described above, and built a version of the EPM's approach is to define a mechanism that is able to
search facility, the Program Reference Language compare information obtained from the different
(P) which operates on that data. The P'M is a sources of knowledge. The PRL accomplishes this
tool for locating regions of program text based via the code region abstraction, which functions as
upon a description provided by the user. As a sup- a common language that each of the representations
port system, it provides programmers with an can use to communicate.
intention-oriented vocabulary for specifying por-
tions of programs in situations where they may be Code regions support two different approaches
unfamiliar with the detailed structure of the code. to search. In the first method, which we call
This might occur in the process of editing programs sequential filtering, the user makes a gross stab

which may be too large to remember explicitly, or at selecting a code region by generating all of the
in the act of understanding code which has rarely elements which satisfy some fairly general condi-
been seen before (as is often the case in mainte- tion. He then sequentially restricts that set by
nance). applying more and more conditions. For example, to

find "the loop which computes the sum of the test
The PM! demonstration system allows program scores". he locates the set of all loops, and then

search based on four of the representations restricts it to the ones which involve test scores
described above, namely the textual, syntactic, and su-mtions. 0
segmented parse and typical programming pattern
views (Figure 3). These databases are connected In the second approach, the user identifies a
through a ode region abstraction that associates collection of items, possibly from several dif-
program features with physical sections of program ferent databases, and intersects them together to
text. find the elements which satisfy all of the condi-

tions he wants to impose. In this "code painting"
approach, the PRL combines these items essentially
by overlaying the corresponding regions of code.

sTUI For example, locating "the loops which compute
Tit sUms" is done (figuratively) by coloring all loops

red and all places that compute sums yellow. Any
region which comes up orange has all of the proper-
ties that were desired.

Code painting is a deliberately coarse affair.
It is designed to exploit the kind of incomplete or
even slightly inaccurate information which the EPH
will contain, given that much of the data is pro-
vided by the user. In some cases, code painting
may not identify the exact section of the program

Mstt5A which the user desired, but in the context of an
P M TPICAI

(MT5 Peml,: interactive system with a screen oriented display,
COT N, PAniCS "close" will be good enough. To help the user see

the effects of code painting, it is possible to S
highlight the identified section(s).

Figure 3. The Program Reference
Language Implementation 5.2 A SCENARIO USIN H E P-.

The PRL has a flat information .tructure. It The following example shows how the PR uses
represents each database in terms of a complex tree the code painting paradigm to answer the question
or graph structure of frames. Although the syste "ind the initializations of the loop which tom-
can arbitrarily convert between viewpoints by using "find the i z of the o ich cma
code regions as ao intermediary, the databases hav hesh sm of the test scores", given he Ad
no direct links between one another. These conver- program shown in Figure 4.

sions are inherently heuristic since the separate

6 .-

5 of 6

for VAXSIZE in 1..10 loop
TOTAL :- ARRAYSUM (TEST-SCORES, MAXSIZE);
put (TOTAL);

end loop;

function ARRAYSUM (A: in ARRAY; N: in INTEGER) return INTEGER is
begin

SUM: REAL:- 0;
for I in 1..N loop
SUM:- SUM + A(I);

end loop;
return SUM;

end ARRAYSUM;

Figure 4. The Ads Program Used in the Scenario.

In this example, the user starts by identify- views this region from the segmented parse perspec-
ing three sets of data, corresponding to the summa- tive (where initializations are represented expli-
tion TP~s, syntactic loops, and segmented parse citly), and scans it for segments of the appropri-
frames involving the test score array. ate type. This is a filtering operation, in which

the user applies restrictions to a previously iden-
tified set of objects.

> (index 'summation tpp-database)
-> TIPsetl--

> (Filter (Segs-Within CODE-RBIONI) 0
> (index 'loops syntax-database) '(Seg-Type "initialization"))

-) LOOPsetl:(length 21 SEGset2:1length 21

> (index 'TEST-SCORES segp -database)
-> SEsetl:[length 6J The PRL converts CODE-REG IONI to a set of seg-

mented parse frames (a heuristic rrocess), and the

function Segs-Within enumerates th. subsegments it
The program only contains one TPP, but there contains. The system identifies ".wo initializa- 0

are two loops, and several segments which relate to tions as a result. The user prints them by con-
the variable TEST-SCORES. It is important to verting them to the textual view.
notice that all of these segments use the data con-
tained in the variable TEST-SCORES but do not
necessarily refer to it by that name (for example, > (showl S0Gset2)
the literal "A(I)" in the ARRAYSUM function -> for I in **I..N** loop
accesses the test score array). This association -) **SUM: REAL:- 0;**
is apparent from the data flow analysis within the
segmented parse.

The answers correspond to the initializations
The user intersects these descriptions by of the iteration variable "I", and the accumulation

invoking the code painting paradigm. The code- variable, "SUM". Note that the PRL retrieves the
painting algorithm returns the largest region of second initialization, even though it is lexically
text which can be described in all three ways. outside of the sumation loop itself. It is iden-

tified from the segmented parse analysis, which
) (overlay-code-regions TPPsetl LOOlseti SEsetl) associates a loop and its initializations no matter

-) CODE-RIGIONI how far apart they might have been in the original
**for I in I..N loop code.

SUM:- SUM * A(I);
end loop;**

6. CUEENT STATUS AND FUTURE WORK
In order to compute this information, the

overlay function automatically converts the input
sets into their corresponding regions of code. AI&DS is now developing a prototype version of
Host of these translations are automatically avail- the IPE (in a three year, 2-3 person effort), which
able (though heuristic in nature). In the case of is intended to demonstrate the efficacy of our
the TPP, the user had to define that mapping at knowledge based approach to the design of program-
some time. ming support tools. The prototype will embody a

portion of all of the facilities that have been

At this point, the user has identified a loop described. The IPE is currently targeted for the

wic cots pointhe sero he estscres. noop Ads language. It will initially run on a Symbolicswhich computes the sum of the test score&. In 3600, a fast. personal LISP computer that featureb

order to find the initializations of this code, he

7S

6 of 6

a high-resolution bit-map display, but it is being
designed to be portable to other systems (in par- ."
ticular. Unix).

we expect to augment the EPhMs database to
include more pragmatic information (e.g.. the rela-
tion between requirements and program structures),
and we intend to extend the PRL to the point where
it will be able to automatically plan and carry out
search requests of the kind demonstrated in this
paper (based on a single user query). When these
extensions are complete, the PRL will define a more
formal reference language.

The task of building a prototype for the IPE
involves a number of issues including the incremen-
tal modification of databases, and the recognition
of user intentions in code. In order to solve
these problems in the context of our applied
research, we expect to rely heavily on methods for
eliciting information from the user. and to focus
on template-oriented techniques for manipulating
programs.

ckpowledgement s 0

We would like to thank Michael Brzustowicz and Eric
Domeshek for their contributions to this project.

7. lRY?.ZCES

1 I. Brotsky, D., Master's Thesis, MIT, forthcom-
ing.

2. Dean, Jeffrey S.. and Brian P. HcCune,
"Advanced Tools for Software Maintenance",
AI&DS TR 3006-1, October 1982.

3. Nelson, T., "A New Home for the Mind," Datama-
U tin. March 1982.

4. Rich, Charles, "Inspection Methods in Program-
ming", AI-Ti-604, Artificial Intelligence
Laboratory, MIT, 1981.

5. Shapiro, Daniel G.. Brian P. McCune. and _

Gerald A. Wilson, "Design of an Intelligent
Program Editor", AI&DS TR 3023-1, September
1982.

6. Teitelbaum, T., T. Reps, and S. Horwitz, "The
Why and Wherefore of the Cornell Program Syn-
thesizer", Proceedings. ACM SIGPLANSIGOA
Conferegne M Text Manipulation. June 1981, S
pp. 8-16.

7. Waters, Richard C.. "Automatic Analysis of the
Logical Structure of Programs", AI-TR-492,
Artificial Intelligence Laboratory, MIT, 1978.

8. Waters, R.. "The Programmer's Apprentice:
Knowledge Based Program Editing," IEEE Tra
stionQA Software Engineering, SE-8, 1,
January 1982. pp. 1-12.

S

r -r ~-. - . ,'~ C WVV 4o-- - - -

APPENDIX B

This appendix contains a reprint of the paper "An Informal Study of
Software Maintenance Problems," by Jeffrey S. Dean and Brian P. McCune.

[4

*- .

-48-

. : -: • ., . .: ,

(Software Maintenance Workshop, December 1983.1

I!

A* INFORM4AL STUDY Of SOTUA AITEWrAM"CZ IZOBLZXS

Jeffrey S. Dean
Brian P. McCune

ORA Advanced Information & Decision Systems
201 San Antonio Circle

Mountain View, California 94040

ABSTRACT OuVIVEw OF Al. FORCE SITES

A study of software maintenance problems was To gain a better understanding of the problems
performed as the first step of a project aimed at encountered in large software maintenance
suggesting advanced or novel techniques to increase environments, we studied the maintenance efforts at
reliability and reduce costa during the maintenance several Air Force C31 software organizations. The
process. This paper sumarizes some of the results study consisted of one or more days of interviewing
of tbe study. key personnel at each of the sites, followed by

questionnaires being sent to these sites.

Characteristics of the three Air Force sites were
collected during the interviews, and are summarized

* INTRODUCTION below.

Site 1:
In an effort aimed at finding long term solutions
to the &roving software maintenance problem. AI&DS application: satellite tracking and control 0U conducted a two year software maintenance study for software: integrated system, coded in Jovial
the Air Force (l). The primary goal of this effort A1
was to identify advanced tools and techniques (vitA size: I million lines
particular emphasis on artificial intelligence hardware: network of small, medium, and large
techniques) capable of significantly impacting the machines
software maintenance process within the neat developer: outside contractors
decade. The project was divided into three major maintainer: ten different contractors
phases: (1) studying the software maintenance process: batch processing, core patching
process and identifying the major problems; (2)
identifying tools and techniques; and (3)
evaluating these tools and techniques. This paper S 2
summarizes our findings from the first phase of the
the project. application: communications

software: numerous systems. generally coded
WVAT IS MAINTEAIICRT in assembly languagesize: systems range in size from 25,000

to 560,000 lines of code
For the purposes of this study, we used an hardware: variety of computers
"inclusive" definition of maintenance: developer: outside contractors

maintainer: in-house
Software maintenance is all those activities process: maintenance generally done in batch
associated with a software system after the processing mode
system has been initially defined, developed, 0
deployed, and accepted as operational.

Kaintenance is primarily a reactive activity: it is
performed in response to requests (primarily application: wide variety, from data processing
requests for modification of software), rather than to strategic planning
on the basis of some regular schedule. software: numerous systems, coded in a

variety of languages
site: 24 million lines of code
hardware: wide range of computers

This work was supported by Rome Air Development developer: systems developed by outside
Center under contract F30602-80-C-0176. contractors

• , . -, . , . • ,' : .' " ' - , , - , , .

S 2

maintainer: mostly in-house, with some outside software evolution (i.e., refining, As compared to
contractors repairing) is a significant part of the maintenance

process: outdated tools phase•..

TUE SOFTWAR I AINTKXAlCR SIURMT Software Maintenance Activities

After the interviews, we sent out an informal We divided software maintenance into a number of
survey to personnel at these sites. The purpose of activities, and asked respondents to rate the
the survey was to gather more information about the importance of each activity on a scale from 0 to 10
maintenance activities, to provide background and (with 10 signifying 'extreme smounts of time spent
motivation for later phases of the project. No on this task'). The averaged responses. in
attempt was e',e to do as thorough or as decreasing order, were as follows:
statistically sophisticated an approach as other
studies (such as 121). TASK IMPORTANCE

The survey was divided into three parts: testing 6.5
coding 6.3 S

1. Reasons: "Why is software modified?" training of new personnel and users 4.8

monitoring, problen detection, diagnosis 4.7
2. Activities: "Where is time sp t during delign 4.4

maintenance?" documentation 3.9

management 3.6
3. Problems: "Why is maintenance to difficult?" configuration control 3.4

analysis and specification of requirements 2.9 0

bIt is interesting to note that more time was spent
Reasons for Software Modification on lower level tasks (such as testing and coding)

than on higher level tasks (such as specification
and design). Unfortunately. our survey did not

We divided modification requests into four probe sufficiently to determine the reasons behind
categories: this distribution of effort; we cannot tell if

higher level tasks were neglected, or if lower
1. Correctine: "there was something wrong with level tasks were just inherently more time

the software." consuming. If higher level tasks are indeed being

neglected, this would most likely have a negative
2. Adantior: "Something the system depended upon impact on the overall maintainability of software.

has changed."

3. Perfecting: "We wanted to fine-tune the Software Maintenance Problems
system."

1 4. Modifyin&: '"e didn't like the system the way The last section of the survey identified four
it was." major software maintenance problems that were

identified during interviews. Respondents were
These categories are similar to those in the Lientz asked to rate the importance of each problem on a
and Swanson study (21, with the addition of one scale from 0 to 10 (with 10 signifying "extremely
more category (modifying). Respondents were asked important problem"). These averaged responses, in
to eatimste the percentage of requests that fell descending order of importance, were as follows:
into each category. The averaged responses, in
descending order, were as follows: PROBLEM IMPORTANCE

REQUEST PERCENTAGE high turnover of personnel 8.7
understanding software/

modifying 46% lack of good documentation 7.5
correcting 311 determining relevant places to make changes 6.9
perfecting 152 monitoring and diagnosing operations 6.3
adapting at

The personnel turnover problem in the Air Force is
Requests in the modifying category alone account the result of an average two year rotation cycle
for almost half of the requests. Together with the that causes s continuing, regular turnover.
perfecting category (the other category for
"refinement" type requests), they account for over
6O of the requests (similar to 121). Software
maintenance has often been thought of as repairing •
softvare. However, these numbers indicate that

2%S

q,. 117

33
T111 COPRPt EMSION PROBLEM References

The top tnree mainteduoce problems all appear t6 Dean-, J.. and B. McCune, Advanced .Tols9 -r
revolve around a lack of understanding of the Haintenance. Rome Air Development Center,
softvare and of the maintenance environment. We RADC-TZ-62-313, December 1982.
call zhis the comorebension problem. The relation
of comprehension/understanding to these problems is 121 Lxentg, B.. and X. B. Svanson, Software
clear: Kaintenace Mansement. Addison-Wesley, 1980.

H igh turnover of personnel: Experienced (31 Shapiro, D., and 1. McCune, 'The Intelligent
personnel are replaced with new personnel who Program Editor: A [ovLedge-Based System for
are unfamiliar vith the applications softvare, Supporting Program and Documentation Maintenance,"
and may be unfamiliar with the programming in Automating Intellitent Behavior-: Applications

environment (tools, operating procedures, etc.) and Frontiers. IEEE Computer Society. May 1983,
as well. The turnover rate is so high that pp. 226-232.
there is little time allocated to update the
documentation adequately.

Difficulty in understanding softvare/lack of
good documentation: Software to be maintained
is hard to understand, particularly in the
absence of current, high quality documentation.

Determining all relevant places to make
changes: Programers have a hard time knowing
where to make changes because they do not
understand well enozgh how the code works.

ADVANCED TOOLS TO REDUCE TRE COMPREHENSION PROBLEM

During the last two phases of this project, we
identified nine tools/techniques for improving the
saxntenoce process, and evaluated these ideas by
soother set of surveys [i. The highest ranked
tools address the problem of comprehension by
explicitly collecting information about programs,
documentation, and/or the programing process, and
helping programrs apply that information on a

regular basis.

CONCLUSIONS

The results of the survey shed light on three
Importzant issues in the maintenance process. S
First, most of the requests for maintenance are
requests for refinement, rather than requests for
repair. This reinforces the idea that maintenance
is primarily a process of evolution. Second. most
of the time spent is spent on low-level tasks, such
as testing and coding. Finally, most of the
difficulty in the maintenance process appears to
arise from a lack of understanding of the
application software. as veil as the maintenance
environment.

1"S
S .f

"" " " '" ' -.' ' "2 - -'.'-L. . - -' - -" "

APPENDIX C.

- This appendix contains a reprint or the paper "Trends for Advanced
* Software Tools," by Brian P. Mc~une and Jeffrey S. Dean.

'4

-49-

b (Invited paper, EASCON '83, September 1983.1

TI1 TO& ADVANC£IOD WOI' L TOOLS

Irian P. McCune and Jeffrey S. Dean 0

Advanced Information & Decision Systems

Kountain View, California

results of new research into automated programming

ASTIRACT support systems. We expect that many such tool*

will rely on the application of artificial intelli-

A recently completed study determined the gence (At) techniques.

major problems in the maintenance of Air Force con-

mand. Control, communications, and intelligence To gain better insi.ght into the specific prob-

software and proposed a number of advanced software lema of software maintenance, we performed a study

tools to deal vjih these problems. Post of these which analysed software maintenance problems in the

advanced tools will rely on knovledge-based tech- Air Force (Dean 4 McCune-821. The study concluded S

nique& from the field of artificial intelligence that the process of comprehending the form and

(At). During the course of this research, a number function of existing software (i.e., what it doe

of general trends were noted in the characteristics and how it does it) is the most crucial step in the

of these and other software tools, including both maintenance process. A number of tools were

Al and non-AX tools. Among these trends are the defined, each of which could provide a limited

use of knowledge of and reasoning about the dknain operational capability in the short term (i.e..

of application, the performance of tool activities less than three years) and then gradually be

in small, incremental steps to provide better feed- enhanced in the medium term (i.e.. three to seven 0

back to the programmer, the increasing intelligence years) and beyond.

of user interfaces to software tools, and the

maintenance and use of a global knowledge base This "comprehension problem" is revealed in

including a history of what has been done before many ways. To begin with, most programming instal-

and why. This paper discusses these and other lotions have a high turnover rate of personnel and

trends for *dvanced softvare tools, have trouble finding qualified replacements. Aa a

result, maintenance personnel are often unfamiliar

with the programs that are being maintained. At 0
the same time, documentation is often unavailable

1. UrTRoDoCTIOU or of poor quality. This increases the difficulty

of comprehending a given program. It is Lot ecay
to understand a program by directly reading the

The effort and expense of maintaining software code because of the quantity of detail involved and

have been recognized as major limitations on the also because coding standards Are poorly enforced

capabilities of current software systems. The dif- and rarely agreed upon. Finally, the process of

ficulties arise for several reasons. First, isolating bugs, designing solutions, and determin-

although hardware costs have decreased, software ing the ramifications of changes is difficult in

expenses have skyrocketed due to the higher cost of the presence of ao incomplete understanding of the

professional programers. Second. as software pro- program's organization. The relative difficulty of

jects have become more and more ambitious, the this task is affected by the tools available to the

technical difficulty of making changes to the programmer.

resulting programs has increased dramatically. As

an illustration of this fact. the maintenance costs The software maintenance study identified a

for large systems typically surpass the funds collection of tools designed to alleviate these

required for their initial developoent; the Depart- problems, all of which rely on a sophisticated

ment of Defense now spends sore than three billion understanding of the structure of programs. 1n

dollars per year on software maintenance. These effect, they operate by transferring some of the

problems are addressed in part by the creation of expertise currently in the minds of programers

standardized structured languages such as Ads. but into a machine-usable form that can be shared.

in our opinion they will only be solved by the Three of the moat relevant tool ideas are summar-

ized below. Advanced Information & Decision Sys-

cems is actively working on all three of these

This research eas supported in part by Rome Air tools.

Development Center under contract F30602-80-C-0116

and by the Air Force Office of Scientific Research - The Proarmmin aally (Pp) sigat a program-

under contract r49620-al-C-0067. mar by systematicallyepplying sdministrstive

i . " . - .

* 2

and technical policies. It enforces some pro- We discuss nine important trends in program-
cedures (e.g., testing of code before installs- ming tools, programming enviroments, and their

tion), suggests others (e.g., notifying a user use. These trends are

group of a change), and automatically performs
some actions on its own. In order to perform I. Advanced capabilities 0
these functions, PM has a model of the underly-
ing environment and each tool in the environ- 2. Domain knowledge and reasoning

ment, including calling options and expected
output. The Programming Manager is also 3. Ability to be tailored

intended to capture heuristic knowledge about
code, for example, that bugs in module A often 4. Life-cycle coverage

cause runtime errors in module B. 5. Tool integration

A -The Intellixnt Program Editor (IPE) is a
knowledge-based tool for supporting the 6. Advanced user interface

development and maintenance of software
[Shapiro & McCune-8381. It embodies a deep 7. Integrated database
understanding of the structure of programs, of
techniques for searching for relevant parts of 8. Incrementalism

programs based upon complex queries [Shapiro &
McCune-83A], and of the manipulations that pro- 9. Distribution

grammers typically apply to code. It can pro-
vide access to a variety of other tools that
deal with code, e.g., the Documentation Assis-
tant described below. 2.1 ADVANCED CAPABILITIES

The Documentation Assistant is a system that An obvious trend in software tools is that
helps obtain, organize, access, and maintain toward more advanced capabilities. This arises in

many different forms of documentation, ranging part from the continuing drop in hardware prices
from line-by-line comments to design principles and increase in the demand and price of skilled
and application-oriented requirements that programmers. It makes economic sense to automate
underly the structure of the code as a whole, more and more of the clerical programming functions
The Documentation Assistant is intenced to pro- as additional cpu cycles become cheaper than addi-
vide knowledge that other systems (such as the tional hours of human labor.

IPE) can employ. Probably more important in the long run than
cost trade-offs of hardware versus people are the
great technical advances that are on the horizon.
Advances in a number of areas are going to have an

2. TRENDS important impact in the next decade. Among these
technical areas are:

In surveying existing production and Artificial intelligence. Artificial intelli-
research-prototype tools, as well as in our own gence (AI) is the science and art of automating
research efforts, some particularly important problem-solving processes that are informal,

tI trends and techniques have surfaced. These trends heuristic, and symbolic in nature. The aim-
represent paradigms for the entire programming pro- pleat definition of Al is any activity that is
cess, capable of forming the basis of a new genera- performed by a non-human entity (typically a
tion of programming tools. Other than that, these digital computer) and that is usually con-
trends are fairly dissimilar, varying in scope from sidered to require intelligence when performed
the very broad to the fairly specific. by humans. At the core of At are two notions:the complex manipulation of symbols (as opposed

The remainder of this paper discusses these to numbers or text), and the use of heuristics
general trends that we see occurring now and into ("rules of thumb") that can guide one quickly 1
the future of software tool development. Defini- to a likely or satisficing solution. Al sys-
tions of specitic tools that embody many of these tems usually perform complex inferencing that
trends are presented in [Dean & McCune-821; three involves combining the use of a number of .-
of these were mentioned above. We confine our- heuristics in an appropriate fashion to solve a
selveh to a discussion of trends for tools, rather problem. Much of the research in applying At
than underlying programming or related languages. to programming has concentrated on fully
Wt also assume that for at least the next decade automating the process, except the specifics-
programming environments art the programming pro- tion stage. Al techniques such as heuristic
Less will evolve trom the current state-of-the-art, reasoning, learning, natural-language under-
Thus, we do not speculate on the potential of radi- standing, and representation of domain
c8l or revolutionary alternatives to programming, knowledge may prove very useful when applied to
-, h as automatic prograaming [Elbchlager & today's programming environments. (Al is now
P'hll ips-b21, in which a single monolthic tool being applied to numerous other defense prob-
hides all processing details from the user. lems, such as ocean surveillance [Drazovich,

McCune, & Payne-82 and ship classification

* ",

iMcCune & Drazovich-831.) on running time. Formal program verification
is one form of program validation. It differs

er high-level languages. A very high-level Irom others by requiring rigorous and formal

language (VHILL) is a programming language that specifications as well as the capability for
provides capabilities significantly beyond the reasoning about programs, and in turn provides _
capabilities offered by traditional high-level a much higher degree of assurance that a pro-
languages. The level of a language refers to gram indeed performs as specified.
its similarity or closeness to machine
language. Assembly language is a low-level - Symbolic execution. Symbolic execution means
language; it maps directly into machine evaluation of a program with symbolic values
language and requires the programmer to be fam- instead of actual data. Symbolic execution
Lliar with the basic operations of the target creates symbolic expressions that represent the
machine. Languages like FORTRAN and PASCAL are values of outputs as a function of input vari-

-A considered high-level programming languages ables, and (symbolic) predicates ("path condi-
(HLLs); they provide the programmer with a com- tions") that characterize the subset of values
putatronal model that is somewhat higher than that cause the program to execute a particular
machine level (e.g., by allowing the programmer program path. Symbolic evaluation thus shows
to talk about variables and loops, instead of the dependencies between the values of dif-
memory locations and jumps). Languages such as ferent variables and between data and control
AFL and LISP are considered even higher level, flows. Symbolic execution provides a versatile
tatling somewhere between HLLs and VILLa; they and powerful tool for debugging and analyzing
allow the programmer to talk about arrays, programs. In comparison with ordinary testing,
lists, and the composition of operators. one symbolic execution of a program may
Experimental VHLLs exist that provide represen- correspond to a potentially large (even infin-
tation of sets and mathematical operations on ite) number of normal test runs. Symbolic exe-
them (e.g., SETL IKennedy & Schwartz-75J), or cution may be considered a weak form of program
objects and operations for specific application verification; it shares some of the problems of
areas. VHLLs remain a research topic because verification systems.

6 the process of translating a VHLL programn into •
an efficient program is difficult. VfLLs can - Graphics and other advanced Lput-outpijj.
still be effectively employed, by virtue of Graphics and other forms of advanced input-
their ability to reduce manpower costs, output (1/o) are valuable in improving the user

interface. For comprehension of complex infor-
P'rogram transformation. Program transformation mation, graphical displays excel at helping
is the conversion of a program into another, users reach their potential. At worst, they
computatioaally "similar" program, where the can be used to mimic the linear textual output
degree of similarity ranges from analogous to of hardcopy terminals; more appropriately, they
equivalent. Transformations may be done for a can be used to display drawings and schematics
variety of reasons. If a program library con- as well as dynamic ('moving") pictures. Termi-
tains a routine similar to what the programmer nals with full-page, high-resolution displays
needs, it may be possible to automatically are now availeble (e.g., Xerox STAR, Apple
transform that routine into the desired one; if LISA, Symbolics 3600 LISP workstation). These
a program is written in a nonprocedural specit- allow the use of screen pages that may be as
Lcation language, it may be necessary to large as actual hardcopy pages; additional
transform the program into a more procedural software provides the capability for stacking3 form before it can be translated Into some real or overlapping these "windows".
prcgramming language; if the program is written
using inherently inefficient constructs, -Software metrics. Measurements of performance
transformation can convert those constructs are necessary to judge both programmers and
into more efficient ones. Taking the idea of software. Used appropriately, this data can be
transformation one step further, the entire used to objectively improve the software pro-
programming process can be thought of as a cess. For example, performance statistics for
series of program transformations or refine- a programmer can be useful in determining
merits, going from a high-level specification to appropriate training courses; statistics about
the actual code. the quality of a program can be used to hell,

decide if the program should be modified or
Formal verification. Formal verification is the rewritten. Typical software metrics provide .]
demonstration that a piece of program is con- quantitative measures of program (omplehity.
sistent with a given specification. This An example metriL is the degree of interconiec-
demonstration is carried out as s proof within tivity of a set of modules as determined by ar
bt framework of a formal mathmLatical system analysis of their data and control flow graphs.
that In most Cases ii based on first-order These measures call be used to pledict. estimated
predicate logic. The specification formally development or maintenance effort, to guide* th
describes desired properties of tile program, it development aid maintenance process, ot to
rnad g ve a complete specification of functionaL predict the reliability (lack ol errors) of a
behavior (relationship between input and output program.
values) or a specilfication of certa in aspects,
like absence of particular runt ime errors, C- pjLer-as s is t ed inst rution. The field of
security of data flows, terminal tion, it bounds computer-assisted inistruct lot (CAl) has been

S

- ---- . *1

attacking subjects such as logic and foreign programming expertise and application expertise.
languages, as well as more elementary topics, An "ultimate" goal might be to endow the system
tor some time. A small amount ot work has been with expertise equaling that of a human; the system
done on teaching particular programming would exhibit programming expertise comparable to
languages aid, to some extent, programming that of a computer scientist and application exper- 0
techniques. To speed up the learning cycle, tise similar to that of a domain specialist. Note
the CAI system usually has access to the pro- that in a programming support envirotiment, the
gramming tools for the appropriate language, in latter type of knowledge is more specialized, hence
order to compile and run programs and automati- less widely applicable (a new knowledge base is

cally grade performance by examining their out- needed for each application area).

put
The use of domain knowledge and reasoning in

the programming environment will drastically change 0
the whole concept of programming. It will allow

2.2 DOMAIN KIMOWLEDGK AND REASONIMN the software tools to truly help the programmer,

freeing the programmer to concentrate on higher-
By domain we refer to an area of expertise, level issues.

l,uch as programming or a particular application

area. Knowledge of and reasoning about a specific
domain can be quite useful in a programming support 2.3 ABLLITT TO BE TAILORED
environment. This is nicely illustrated with an S
vsmample from an analogous situation. Suppose you Future tools will have the ability to be
had a technical manuscript that needed to be typed, highly tailored to suit the needs of the particular
II you gave tie manuscript to a typist who spoke no situation, including management hierarchy, applica-
rnem.lith, you would expect, at beat, a word-for-word tion domain, other tools available in the program-
typewritten copy of the manuscript. It you gave it ming environment, and idiosyncrasies of the tool
to adi English-speaking typist, you would hope that users. Obviously, this level of variability goes
hmmpi,, errorl,, such as misspellings and punctuation well beyond the simple parate terization or runtime
rir,,rb would be fixed. If you gave it to alm options found in many tools today. Modeling large 0
K.glmi m teacher moonlighting as a typiA, you bodies of facts and preferences requires knowledge
wou ldint be surprised to t ind that some of your representation techniques from Al. Modifying these
pi, be had been improved upon. And It you were bodies requires all ability to elicit new or modd-
iuky enough to Iind a typist familiar with tie tied knowledge from users or to learn by observa-
,i1um ot discourse (of the manuscript), you tion. These areas are among the most difficult in
,1uldn i be surprised to find factual errors AI research, but the potential is tremendous.
ot r ec t ed .

The problem of getting the manuscript typed 2.4 LIFK-CYCLE COVERAGE

with tie beat possible result is similar to tme
problem of writing a program. You select some type Future enviroments will have capabilities
of editor to use in entering the program text. A that support more of the software life-cycle. Most
standard text editor would be comparable to the important, maintenance of software after initial
non-English-speaking typist: text is entered release is recognized as typically requiring two-
exactly as typed, with no enhancements. The thirds of the overall lifetime costs of a software
English-speaking typist could be compared to a system. Therefore tools must be designed with

synitax-oriented editor, which can eliminate syntac- maintenance, as well as development, in mind. Some
tic program errors and misspelled keywords (e.g., tools may be developed solely for use in the
GANDALF's editor, MENTOR, Cornell Program Syn- maintenance phase.
tiesizer . The other two typists have a fair
degrie of knowledge and understand how to apply it. The use of tools to date has been concentrated
The English teacher/typist knows about the language in the coding and testing phases of software
ithelt (rather than the content ot what is being development. There is an obvious reason for this:
said). Tils situation is comparable to a program- source and executable code and data are often the
miTing language-specific editor, which applies only forms of information stored in the computer
knowledge about the domain of programming; the edi- and therefore available to tools. This situation
tm- Ln help with general plogrammmnig techniques, is slowly changing, as other forms of information

ai catch certain types of semantic errors, can are formalized and automated, ranging from require-

mmemte style suggestions, and -1an improve the general ments and design specifications, to formal documen-

.. w ot the program. The technical typist who tation and test data specifications, to management

mderstmandt the content ot what is beig said is schedules and methodology descriptions, to measure-
11- lugm,-b to aim editor that utilizes kmmwledge mentV gained by applying software metrics. Fur
ai,,1i the application domafin it cai hrvIp wit h each new type of inlormation, tools are needed to
A "im1m-pe m ih t m techniques, suchm as algorithm assist in its creation, analysis, and transtorm s-
ovelopment . and can) catch certa in kinds ot firag Lion into other types of information.

al. t I , r rcars that are depemdent uponi tile spec i I
A i)p'!itatlUn domain. Because so much more information than just

code will be dealt with by tools, many future tools

.,o, in a programming suppltt emviroum t, it will be independent Lof a specific programming
m. desirable to hive twt ipes Oft exp r t Iae language. .

. .1

• - . -. .

2.5 TOOL INTECRATION the success of this requirement will be seen as
APSEs are implemented and used.

There is a saying that "the whole is more than

the sum of its parts". This notion of synergy is
important in the design of software tools. When 2.6 ADVARCKD USKIL ITIkFAACE S
several tools work together, they may provide some-
thing that neither one could alone provide. The Future tools will have very advanced inter-

term integration is used here to refer to the faces to programmers and other users. The most

degree of synergy and close coupling between tools, visible part of the interface is the collection of
Tools in a well-integrated system exhibit a large I/O techniques available. Input techniques may

degree of synergy (as a result of working well range from selection of commands from menus, point-

together). Since synergy results from interdepen- ing using a mouse or other cursor positioning dev-
dencies, integrated tools are likely to share ice, natural-language input, and speech input. 0
information, share common procedures, or provide Output techniques include high-resolution graphics

complementary functions. Systems such as INTERLISP that are capable of displaying publication-quality

[Teitelman & Masinter-81] and UNIX JKernighan & program listings, the use of color to aid in focus-

Maahey-811 owe a large amount of their success to ing attention, and speech output.

their integration.

Despite the current interest in advanced I/O
Well-integrated systems provide several impor- techniques, the use of these techniques alone can-

tant advantages: not solve software development and maintenance

problems. The primary difficulty is in deciding
- Human comprehension is aided by the uniformity what information to communicate to the programmer,

provided by a well-integrated system. A con- rather than how to communicate it. A tool that
sitstent underlying philosophy aids users in uses some combination of advanced I/O techniques
making inferences about how the system works, can be changed to work with simpler methods, usu-

ally without a significant loss in information or
- An integrated tool set allows one to put tools functionality.

together quickly in order to perform tasks that
may not have even been envisioned by the system Many tools converse with the programmer

designers. This benefit is well known to UNIX interactively. To be used effectively, it is
users, necessary for the user to understand what the tool

is saying and how to respond to it. On-line help
- Integrated tools work together, allowing more facilities can teach generic command structures,

efficient and effecLive performance. Effi- but tools must also be able to explain the details
ciency is gained when one tool can make use of of the current situation. Knowledge-based Al sys-

another's work, eliminating redundant computa- tems are generally capable of explaining their 0
Uion; for example, symbol tables created by a current state and what chain of reasoning got them
compiler can be used by debuggers, linkers, there.

cross-reference listers, etc. Effectiveness is

increased when tools can make use of each oth- Going even further, advanced user interfaces

era information; for example, a compiler may should provide some of the intelligence and aSSis-
be able to apply optimizing code generation tance that a human programming assistant might pro-

strategies by getting information from a pro- vide. An intelligent user interface not only makea
gram verifier that the compiler cainot deduce life easier for the programmer; it helps increase
by purely syntactic means, programmer productivity and software reliability.

Ilere are some of the kinds of features that an

intelligent user interface might provide:
Related to integration is the idea of com-

pleteness. Corpletteness means that the user should Programmability. The user interface in a pro-
h.- able to do everything that might be needed. The gramating support envrotlqent bhould provide the
! auty of an integrated system L marred when a programmer with toolh for automati',g hi own
,-,r haa to expend a large amount of energy to do tasks, either by the programmer explicitly pro-
-,,roth lug that is conceptually simple but that gramming the tasks or by the system learning.
lt t aI lowed by the system. For example, the

INIHit.IP ayarte alows certain1 comn monitor- Error prevention. By making "bad" things hard
",vl omalandi to he perlormed without leaving the to do, it is less likely that they will be done

*. tl xn, To perform other commands, there is a sirm- inadvertently. Warnings about dangtrous

.I i nt,.ilace that createb a new process running actions, before they arte performed, Ilitheir
);), rd t irig syatti-mn a owm ind pro tvi sor , al lowing reduce the chance of 'r tor.

,,, , ' ut arbitrary cuolaida and then
t, ri, t INTER. ISP ithout any loss of conttilnuity. Error detection and correatli . It is not too

difficult to catch many types of errois
), t.gl ing a ,oisteot yet ihablI' system automatically. Every attempt should be made to

r,'sL 8 a great deal of ngenuity and insight onl catch errors as early as possible; the latet an
the part of the designers. but the e'flort does pay error is detected, the more expensive it is to

ft consider the popularity of UNIX. 'The Stone- fix. Error diagnost ioa should be meanilgful to
mail requirements for Ada Program Support Environ- the user, not only to the person who wrote
Wt.'ts (APSEs) also specify an integrated tool set, them. Some errors, espettally silly, careless

..-

"

ones (e.g., spelling errors), can be corrected evolve into a full-fledged knowledge base that
without too much difficulty. incorporates all of the previous information plus

complex semantic models and sets of heuristics.
- Recoverabiltty. If an error is made, the user

should be able to recover as easily as possi- The history list or audit trail is cne data- 0r ble. The system should have safeguards to pro- base component that is recognized as important by
vide the user with certain paths of recourse, most state-of-the-art environments (e.g., INTER-
e.g., by allowing actions (such as deleting a LISP, APSEs). The notion of computational history
file) to be undone. "Forgiveness" is impor- refers to the information available during the
tant. Kaking a blunder is bad enough; one course of some computation. For example, when
should not have to spend hours or days to right using a text editor, the history includes the edit-
it. ing commands as well as the ;nserted and/or deleted

text; when using a compiler, the history includes
- Active help. If the user repeatedly does things the original source code, the parse trees, parse

incorrectly, there may be no need to wait until tree transformations, and generated code. Some of
help is requested. In many cases, the user may this information has no long-term value beyond
not be aware that help exists, or may not know inmediate consumption by a program; but much of the
how to ask for it. HIelp should be offered information is quite valuable, either because it is
automatically. expensive to recompute (e.g., parse trees for a

large module) or because it cannot be recomputed
- Non-interactive operation. The system should be (e.g., a record of all operations performed by the •

able to function without human intervention if user).
necessary. If a programmer leaves the terminal
while performing a task, there is oftentimes no There are numerous reasons why history is a
need to bring things to a halt when only non- necessary ingredient in advanced programming
crucial human input is needed. environmenta. First of all, sophisticated program-

ming environments must allow programmers to make
changes incrementally, so that the cost of making

In order to accomplish these goals, an small changes is small. To accomplish this, inter- •
advanced user interface must have models of both mediate results of various system tools and utili-

the user and the process by which tools are used. ties (e.g., compilers, linkers) must be kept
It is necessary to understand the programmer's around. Another need is accountability: records
actions (what he is doing) and intentions (what he of all important activities should be maintained so
will be or wants to be doing). For example, an it can always be determined what has been done and
editor incorporating programming domain knowledge who has done it. Important activities include
needs to know what parts of a program the program- things like changes to code, document updates, sys-
mer will be writing or changing, as well as the tem builds, etc. From the perspective of the user
(expected) effect this will have on other parts of interface, preservation of a history is also desir-
the system. An editor incorporating application able. Some programming systems, such as INTERLISF,
domain knowledge needs to know what techniques the allow the user to see a record of what has been
programmer will be utiliring, as well as the type done and allow transactions to be "replayed".
ol output and results expected. As soon as an Finally, history is necessary for the application
envirorment has a model of what tools are available of programming domain knowledge and reasoning: to
and how to access them, it is feasible to construct understand what the programmer is doing, it is
comprehensive or mets-tools, tools that reason necessary to understand the context in which the •
about and invoke other tools on behalf of the user. programmer he& been working.

To help the programmer make decisions about
wt.iLt t do, tools need to understand the program- 2.8 IVCkIIJrrIT.ISM
mLti protebs itselt ivt order to determine what Ihe
rogr,tumier r doing right or wrong. W>. a Support of incremental change is vital for the

sp,'.itic methodology is chosen for an environwvn-, maintenance of all but the smallest systems. It is
,:twdre tools should be provided to aid each step unacceptable and unnecessary to require a whole

ot the mr.hodology. system to be rebuilt each time a small change is

made: unacceptable because the cost is too high,
unnecessary because changes usually leave many

2.) I1TKGRATKD UATARASK parts of the system unaffected.

1iLtUrmatIon In must programming envtrommients The move toward building systems that handle
is stored as a set of individual tiles of various incremental change has been slow, primarily since
types. This is essentially just a classical file it is (in general) more difficult to build tools
system as provided by most operating systems. The that are incremental. There are several problems.
mo, t g,.nitration oI environments will probably use First of all, new algorithms may have to be devised
some thing closer to a relational model of data, so or old "batch" algorithms modified, in order to
that minilorm random access is possible to all handle incremental requests. Another problem is
,btcts and su that complex relational objects such lack of information: most tools throw out informa-
as structured documentation can be easily stored tion as soon as they are done with it, rather than
amid accessed. As more Al-based tools are incur- leaving it around for future reference. An example
porated intu an environment, the database will of this is symbol table information, which the

.. 'S. -- - : , s . , , d

- -' 4 4 - -. N ..

7

compiler builds up for each module and then usually 4. A{NiaOWLR"_K.-r

discards. This means that the symbol table must be

rebuilt for each recompilation, even if code This paper has benefited from discussions withchange hape hno benecte ono it.ssoswih

changes had go effect on it. Gerald A. Wilson and Daniel G. Shapiro.

Incrementalism is a technique vital for the

development and maintenance of large systems, yet

teW esisting programming tools make use of it.

Aside from some research on incremental techniques 5. RYgRKUNCKS

fur syntactic parsing, most attempts at incorporat-
ing incrementalism have been somewhat ad hoc (and
less than generally applicaole). The idea of .

incrementalism falls out naturally when some of the [Dean & McCune-82] Jeffrey S. Dean and Brian P.
Ir other techniques discussed earlier in this section McCune, Advanced Tools for Software Mainte-

(e.g., history) are incorporated into the program- nance, Technical Report 3006-1, Advanced Infor-

ming environment. mation 6 Decision Systems, Mountain View, Cali-
fornia, October 1982.

2.9 DISTRIWTION [Drazovich, McCune, & Payne-821 Robert J. Drs-

zovich, Brian P. McCune, and J. Roland Payne,

As more of the non-coding functions of the "Artificial Intelligence: An Emerging Military
sofware life-cycle are automated, it becomes Technology," invited paper, Conference Recurd,
softare life-cye re oatsinled ito mes EASCON '82: Fifteenth Annual Electronics and
clearer that the model of a single programmer Aerospace Systems Conference. Institute of
interacting with a unique copy oa the environment Electrical and Electronics Engineers, Inc.,
and database is not adequate. Large programming Washington, D.C., September 1982. pages 341-!

projects have numerous individuals operating asyn-

chronously. These personnel may have different 348.

functions (e.g., supervisor, designer, coder, tea- R
ter, documenter), different physical locations, -Elochlager & Phillips-821 Robert A. Elachlager

different "home" computers, etc. Thus, programaing and Jorge V. Phillips. editors, "Automatic Pro-

environments are fast entering the era of distri- gramming", in Avrn Barr and Edward A. Feigen-

buted systems and processing, with all of the stan- baum, editors, The Handbook 2- Artificial
dard problems of planning and coordination, syn- Intelligence, Volume 2, Chapter 10, William

chronization of computer objects and events, Kaufmann, Inc., Los Altos, California, 1982,

maintenance of multiple copies of objects, etc. pages 295-379.

A number of architectures are possible for - (Kennedy & Schwartz-751 K. Kennedy and J. 0
distributed programming environments. The simplest Schwartz. "An Introduction to the Set Theoreti-

hab each programmer accessing the primary develop- cal Language SETL", Computers and Mathematics,

ment computer (probably a mainframe) via a front- with Applications, Volume 1. Number 1. 1975,

end computer (probably an advanced personal com- pages 97-119.

puter). A few of the more interactive tools (e.g., [Kernighan & Maahey-811 Brian 1. Kernighan and

editor, language interpreter) would run on the
front-end, while moat would remain on the mainframe John R. Mashey, "The UNIX Programming Environ-

(e.g., optimizing compiler, database handler). A ment", Computer, Volume 14, Number 4, April

more distributed architecture would have copies of 1981, pages 12-24.

each tool at each node, with no node being central.

Finally, individual tools may also be distributed (McCune & Drazovich-83" Brian P. McCune and
acos pocssrssoedy.Robert J. Drazovich, "Radar with Sight and

across processors someday. Knowledge", invited paper, Defense Electronics,

Volume 15, Number 8, August 1983.
- [Shapiro & McCune-83A] Daniel G. Shapiro and

3. CONCLUSION Brian P. McCune, Searching a Knuwledge Base of

Progcrams and Documentation, Technical Memoran-

We have presented nine trends that cut across dum 1014-2, Advanced Information & Decision

tany possible programming tools and support Systems, Mountain View, California, January

envirouments. Lach trend will eventually require 1983.

ihr use ot Al to achieve its potential. In this
role. Al is not a radical, high-risk approach to (Shapiro & McCune-83h Daniel G. Shapiro and

the buttware problem, but a technology that will Brian P. McCune, "The Intelligent Program Edi-
make possible major enhancements to every aspect of tor: A Knowledge-Based System for Supporting

Program and Documentation Maintenance",
the programming paradigm of today. Automating Intelli&elt Behavior : Applicatjns

and Frontiers, Proceedings, Trends and Applica-

tions 1983, IEEE Computer Society, Los Angeles,
California, May 1q83, pages 226-232.

[Teitelman b Masinter-811 Warren Teitelman and 0

. . * . : .: . .. - . -. . -.-. .-. .

. - I I. - "~:-'-w---.-~-~-- -- '~-...- ~-- - -. -

*
H

-

0~~
Larry ?Iaatnter, "The INTERLISP Programming
EnvLro~erlt. ~ Volume 14, Number 4.
Apr~1 1981, pagea 25-33.

r

-

0

S

0

I
*

S

S

S

S

0
5

* FILMED

2-85

* DTIC

